Manufacturing of biodegradable Flax-PLA curvatures using a unique vacuum-temperature profile

IF 9.9 Q1 MATERIALS SCIENCE, COMPOSITES Advanced Industrial and Engineering Polymer Research Pub Date : 2023-07-01 DOI:10.1016/j.aiepr.2023.02.001
S.M.R. Kazmi , K. Jayaraman , R. Das
{"title":"Manufacturing of biodegradable Flax-PLA curvatures using a unique vacuum-temperature profile","authors":"S.M.R. Kazmi ,&nbsp;K. Jayaraman ,&nbsp;R. Das","doi":"10.1016/j.aiepr.2023.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, the manufacturing of completely biodegradable composites with a unique single-step sheet consolidation method was discussed. Layers of unidirectional, coarse twill, and fine twill flax; and poly lactic acid (PLA) were used as the material system to manufacture cylindrical and spherical composite half-shells. The three processing parameters were vacuum pressure, temperature and time. Thickness, mass fraction, tensile strength, shear strength, shape conformance and biodegradability of the manufactured composites were experimentally determined. The composite specimens’ cross-sections were also observed under an optical microscope, to assess, the consolidation quality of the manufactured composites, that was represented by the composite thickness, and primarily governed by the polymer viscosity, and the transverse and in-plane fibre reinforcement permeability. Biodegradable Flax-PLA composites were successfully consolidated, within 5% tolerance of the targeted mass fractions and thickness values, conforming within 8% tolerance to the shape of the mould. The highest achieved shear strength, flexural modulus, tensile strength and elastic modulus, were 22 MPa, 19.9 GPa, 179 MPa and 19.5 GPa, respectively. This research will be valuable to develop, flat and curved biodegradable composites, for one-off or small scale productions, at a relatively low capital cost.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"6 3","pages":"Pages 265-277"},"PeriodicalIF":9.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Industrial and Engineering Polymer Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542504823000155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, the manufacturing of completely biodegradable composites with a unique single-step sheet consolidation method was discussed. Layers of unidirectional, coarse twill, and fine twill flax; and poly lactic acid (PLA) were used as the material system to manufacture cylindrical and spherical composite half-shells. The three processing parameters were vacuum pressure, temperature and time. Thickness, mass fraction, tensile strength, shear strength, shape conformance and biodegradability of the manufactured composites were experimentally determined. The composite specimens’ cross-sections were also observed under an optical microscope, to assess, the consolidation quality of the manufactured composites, that was represented by the composite thickness, and primarily governed by the polymer viscosity, and the transverse and in-plane fibre reinforcement permeability. Biodegradable Flax-PLA composites were successfully consolidated, within 5% tolerance of the targeted mass fractions and thickness values, conforming within 8% tolerance to the shape of the mould. The highest achieved shear strength, flexural modulus, tensile strength and elastic modulus, were 22 MPa, 19.9 GPa, 179 MPa and 19.5 GPa, respectively. This research will be valuable to develop, flat and curved biodegradable composites, for one-off or small scale productions, at a relatively low capital cost.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用独特的真空温度曲线制造可生物降解的Flax-PLA固化剂
在这项研究中,讨论了用独特的单步片材固结方法制造完全可生物降解的复合材料。单向、粗斜纹和细斜纹亚麻层;以聚乳酸(PLA)为材料体系,制备了圆柱形和球形复合材料半壳。三个工艺参数分别为真空压力、温度和时间。实验测定了复合材料的厚度、质量分数、拉伸强度、剪切强度、形状一致性和生物降解性。在光学显微镜下还观察了复合材料试样的横截面,以评估制造的复合材料的固结质量,固结质量由复合材料厚度表示,主要由聚合物粘度、横向和平面内纤维增强渗透性决定。可生物降解的Flax-PLA复合材料成功固结,在目标质量分数和厚度值的5%公差范围内,符合模具形状的8%公差范围内。获得的最高剪切强度、弯曲模量、拉伸强度和弹性模量分别为22MPa、19.9GPa、179MPa和19.5GPa。这项研究将有助于以相对较低的资本成本开发一次性或小规模生产的扁平和弯曲可生物降解复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Industrial and Engineering Polymer Research
Advanced Industrial and Engineering Polymer Research Materials Science-Polymers and Plastics
CiteScore
26.30
自引率
0.00%
发文量
38
审稿时长
29 days
期刊最新文献
Editorial Board Editorial Board Fire performance durability of flame retardants in polymers and coatings Review of thermal conductivity in epoxy thermosets and composites: Mechanisms, parameters, and filler influences Surface grafting POSS to improve the hydrophobicity and fire safety of polyrotaxane based smart phase change materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1