Mengmeng Yang, Ivan Tjuawinata, Kwok-Yan Lam, Tianqing Zhu, Jun Zhao
{"title":"Differentially Private Distributed Frequency Estimation","authors":"Mengmeng Yang, Ivan Tjuawinata, Kwok-Yan Lam, Tianqing Zhu, Jun Zhao","doi":"10.1109/TDSC.2022.3227654","DOIUrl":null,"url":null,"abstract":"In order to remain competitive, Internet companies collect and analyse user data for the purpose of the improvement of user experiences. Frequency estimation is a widely used statistical tool, which could potentially conflict with the relevant privacy regulations. Privacy preserving analytic methods based on differential privacy have been proposed, which require either a large user base or a trusted server. Although the requirements for such solutions may not be a problem for larger companies, they may be unattainable for smaller organizations. To address this issue, we propose a distributed privacy-preserving sampling-based frequency estimation method which has high accuracy even in the scenario with a small number of users while not requiring any trusted server. This is achieved by combining multi-party computation and sampling techniques. We also provide a relation between its privacy guarantee, output accuracy, and the number of participants. Distinct from most existing methods, our methods achieve centralized differential privacy guarantee without the need of any trusted server. We established that, even for a small number of participants, our mechanisms can produce estimates with high accuracy and hence they provide smaller companies with more opportunity for growth through privacy-preserving statistical analysis. We further propose an architectural model to support weighted aggregation in order to achieve a higher accuracy estimate to cater for users with varying privacy requirements. Compared to the unweighted aggregation, our method provides a more accurate estimate. Extensive experiments are conducted to show the effectiveness of the proposed methods.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"3910-3926"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2022.3227654","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1
Abstract
In order to remain competitive, Internet companies collect and analyse user data for the purpose of the improvement of user experiences. Frequency estimation is a widely used statistical tool, which could potentially conflict with the relevant privacy regulations. Privacy preserving analytic methods based on differential privacy have been proposed, which require either a large user base or a trusted server. Although the requirements for such solutions may not be a problem for larger companies, they may be unattainable for smaller organizations. To address this issue, we propose a distributed privacy-preserving sampling-based frequency estimation method which has high accuracy even in the scenario with a small number of users while not requiring any trusted server. This is achieved by combining multi-party computation and sampling techniques. We also provide a relation between its privacy guarantee, output accuracy, and the number of participants. Distinct from most existing methods, our methods achieve centralized differential privacy guarantee without the need of any trusted server. We established that, even for a small number of participants, our mechanisms can produce estimates with high accuracy and hence they provide smaller companies with more opportunity for growth through privacy-preserving statistical analysis. We further propose an architectural model to support weighted aggregation in order to achieve a higher accuracy estimate to cater for users with varying privacy requirements. Compared to the unweighted aggregation, our method provides a more accurate estimate. Extensive experiments are conducted to show the effectiveness of the proposed methods.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.