Efficient extracellular production of recombinant proteins in E. coli via enhancing expression of dacA on the genome.

IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Industrial Microbiology & Biotechnology Pub Date : 2022-07-30 DOI:10.1093/jimb/kuac016
Haiquan Yang, Haokun Wang, Fuxiang Wang, Kunjie Zhang, Jinfeng Qu, Jianmin Guan, Wei Shen, Yu Cao, Yuanyuan Xia, Xianzhong Chen
{"title":"Efficient extracellular production of recombinant proteins in E. coli via enhancing expression of dacA on the genome.","authors":"Haiquan Yang, Haokun Wang, Fuxiang Wang, Kunjie Zhang, Jinfeng Qu, Jianmin Guan, Wei Shen, Yu Cao, Yuanyuan Xia, Xianzhong Chen","doi":"10.1093/jimb/kuac016","DOIUrl":null,"url":null,"abstract":"<p><p>D, D-carboxypeptidase DacA plays an important role in the synthesis and stabilization of Escherichia coli cell wall peptidoglycan. The production level of extracellular recombinant proteins in E. coli can be enhanced by high D, D-carboxypeptidase activity. Construction of expression systems under optimal promoters is one of the main strategies to realize high protein production in E. coli. In this study, the promoter PdacA-3 from DacA on the genome of E. coli BL21 (DE3) was verified to be efficient for recombinant green fluorescent protein using the plasmid mutant pET28a-PdacA with PdacA-3. Meanwhile, the promoter PdacA-3 was engineered to increase the production level of proteins via inserting one or two Shine-Dalgarno (SD) sequences between the promoter PdacA-3 and the target genes. The expression level of dacA on the genome was increased by the improved transcription of the engineered promoters (especially after inserting one additional SD sequence). The engineered promoters increased cell membrane permeabilities to significantly enhance the secretion production of extracellular recombinant proteins in E. coli. Among them, the extracellular recombinant amylase activities in E. coli BL21::1SD-pET28a-amyK and E. coli BL21::2SD-pET28a-amyK were increased by 2.0- and 1.6-fold that of the control (E. coli BL21-pET28a-amyK), respectively. Promoter engineering also affected the morphology and growth of the E. coli mutants. It was indicated that the engineered promoters enhanced the expression of dacA on the genome to disturb the synthesis and structural stability of cell wall peptidoglycans.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338883/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuac016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

D, D-carboxypeptidase DacA plays an important role in the synthesis and stabilization of Escherichia coli cell wall peptidoglycan. The production level of extracellular recombinant proteins in E. coli can be enhanced by high D, D-carboxypeptidase activity. Construction of expression systems under optimal promoters is one of the main strategies to realize high protein production in E. coli. In this study, the promoter PdacA-3 from DacA on the genome of E. coli BL21 (DE3) was verified to be efficient for recombinant green fluorescent protein using the plasmid mutant pET28a-PdacA with PdacA-3. Meanwhile, the promoter PdacA-3 was engineered to increase the production level of proteins via inserting one or two Shine-Dalgarno (SD) sequences between the promoter PdacA-3 and the target genes. The expression level of dacA on the genome was increased by the improved transcription of the engineered promoters (especially after inserting one additional SD sequence). The engineered promoters increased cell membrane permeabilities to significantly enhance the secretion production of extracellular recombinant proteins in E. coli. Among them, the extracellular recombinant amylase activities in E. coli BL21::1SD-pET28a-amyK and E. coli BL21::2SD-pET28a-amyK were increased by 2.0- and 1.6-fold that of the control (E. coli BL21-pET28a-amyK), respectively. Promoter engineering also affected the morphology and growth of the E. coli mutants. It was indicated that the engineered promoters enhanced the expression of dacA on the genome to disturb the synthesis and structural stability of cell wall peptidoglycans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过增强dacA在基因组上的表达,在大肠杆菌中高效地胞外生产重组蛋白
摘要D, D-羧基肽酶DacA在大肠杆菌细胞壁肽聚糖的合成和稳定中起着重要作用。高D, D-羧基肽酶活性可以提高大肠杆菌胞外重组蛋白的生产水平。在最优启动子下构建表达系统是实现大肠杆菌高产蛋白的主要策略之一。本研究利用含有pdac -3的质粒突变体pET28a-PdacA,验证了大肠杆菌BL21 (DE3)基因组上的DacA启动子pdac -3对重组绿色荧光蛋白的有效性。同时,通过在启动子pdac -3和靶基因之间插入1 - 2个Shine-Dalgarno (SD)序列,对启动子pdac -3进行工程改造,提高蛋白的产量。通过改进工程启动子的转录(特别是在插入一个额外的SD序列后),dacA在基因组上的表达水平增加。工程启动子提高了细胞膜通透性,显著提高了大肠杆菌胞外重组蛋白的分泌量。其中,大肠杆菌BL21::1SD-pET28a-amyK和大肠杆菌BL21::2SD-pET28a-amyK的胞外重组淀粉酶活性分别比对照(大肠杆菌BL21- pet28a - amyk)提高了2.0倍和1.6倍。启动子工程也影响了大肠杆菌突变体的形态和生长。结果表明,基因工程启动子增强了dacA在基因组上的表达,干扰了细胞壁肽聚糖的合成和结构稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Industrial Microbiology & Biotechnology
Journal of Industrial Microbiology & Biotechnology 工程技术-生物工程与应用微生物
CiteScore
7.70
自引率
0.00%
发文量
25
审稿时长
3 months
期刊介绍: The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology
期刊最新文献
Automated yeast cultivation control using a biosensor and flow cytometry. Evolution and Screening of Trichoderma reesei Mutants for Secreted Protein Production at Elevated Temperature. Characterization of pectinase producing Saccharomyces cerevisiae UCDFST 09-448 and its effects on cull peach fermentations. Improving the alcohol respiratory chain and energy metabolism by enhancing PQQ synthesis in Acetobacter pasteurianus. Development of Modular Expression Across Phylogenetically Distinct Diazotrophs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1