Thermodynamic, kinetic and docking studies of some unsaturated fatty acids-quercetin derivatives as inhibitors of mushroom tyrosinase

IF 1.1 Q4 BIOPHYSICS AIMS Biophysics Pub Date : 2020-09-01 DOI:10.3934/biophy.2020027
Morteza Vaezi, G. Behbehani, A. Farasat, N. Gheibi, Cellular
{"title":"Thermodynamic, kinetic and docking studies of some unsaturated fatty acids-quercetin derivatives as inhibitors of mushroom tyrosinase","authors":"Morteza Vaezi, G. Behbehani, A. Farasat, N. Gheibi, Cellular","doi":"10.3934/biophy.2020027","DOIUrl":null,"url":null,"abstract":"Inhibition of activity and stability structure of mushroom tyrosinase (MT) is highly important, since it is a key enzyme of melanogenesis playing various roles in organisms. In this study, thermodynamic stability and diphenolase activities were investigated in the presence of quercetin-7-linoleate (ligand I) and quercetin-7-oleate (ligand II) on mushroom tyrosinase by experimental and computational methods. Kinetic analyses showed that the inhibition mechanism of these ligands is reversible and competitive manner. The inhibition constants values (KiI = 0.31 and KiII = 0.43 mM) and the half maximal inhibitory concentration (IC50 = 0.58 and 0.71 mM) were determined for ligand I and ligand II respectively. Thermal denaturation for the sole and modified enzyme were performed by using fluorescence spectroscopy to obtain the thermodynamic parameters of denaturation. Type of interactions and orientation of ligands were determined by molecular docking simulations. The binding affinities of the MT–ligand complexes during docking were calculated. In the computational studies performed using the MT (PDBID: 2Y9X) from which tropolone was removed, we showed that the ligands occupied different pockets in MT other than the active site. The best binding energies with values of −9 and −7.9 kcal/mol were calculated and the MolDock scores of the best poses with the lowest root mean square deviation (RMSD) were obtained as −172.70 and −165.75 kcal/mol for complexes of MT–ligand I and MT–ligand II, respectively. Computational simulations and experimental analysis demonstrated that the ligands increased the mushroom tyrosinase stability by reducing the activity of enzyme. In this regard, ligand I showed the potent inhibitory and played an important role in enzyme stability.","PeriodicalId":7529,"journal":{"name":"AIMS Biophysics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/biophy.2020027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 7

Abstract

Inhibition of activity and stability structure of mushroom tyrosinase (MT) is highly important, since it is a key enzyme of melanogenesis playing various roles in organisms. In this study, thermodynamic stability and diphenolase activities were investigated in the presence of quercetin-7-linoleate (ligand I) and quercetin-7-oleate (ligand II) on mushroom tyrosinase by experimental and computational methods. Kinetic analyses showed that the inhibition mechanism of these ligands is reversible and competitive manner. The inhibition constants values (KiI = 0.31 and KiII = 0.43 mM) and the half maximal inhibitory concentration (IC50 = 0.58 and 0.71 mM) were determined for ligand I and ligand II respectively. Thermal denaturation for the sole and modified enzyme were performed by using fluorescence spectroscopy to obtain the thermodynamic parameters of denaturation. Type of interactions and orientation of ligands were determined by molecular docking simulations. The binding affinities of the MT–ligand complexes during docking were calculated. In the computational studies performed using the MT (PDBID: 2Y9X) from which tropolone was removed, we showed that the ligands occupied different pockets in MT other than the active site. The best binding energies with values of −9 and −7.9 kcal/mol were calculated and the MolDock scores of the best poses with the lowest root mean square deviation (RMSD) were obtained as −172.70 and −165.75 kcal/mol for complexes of MT–ligand I and MT–ligand II, respectively. Computational simulations and experimental analysis demonstrated that the ligands increased the mushroom tyrosinase stability by reducing the activity of enzyme. In this regard, ligand I showed the potent inhibitory and played an important role in enzyme stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一些不饱和脂肪酸-槲皮素衍生物作为蘑菇酪氨酸酶抑制剂的热力学、动力学和对接研究
抑制蘑菇酪氨酸酶(MT)的活性和稳定结构是非常重要的,因为它是黑色素生成的关键酶,在生物体中发挥着各种作用。本研究采用实验和计算方法,研究了槲皮素-7-亚麻酸盐(配体I)和槲皮素-7-油酸盐(配体II)对蘑菇酪氨酸酶的热力学稳定性和二酚酶活性。动力学分析表明,这些配体的抑制机制是可逆和竞争的。分别测定配体I和配体II的抑制常数值(KiI=0.31和KiII=0.43mM)和半最大抑制浓度(IC50=0.58和0.71mM)。利用荧光光谱法对鞋底和改性酶进行热变性,得到变性的热力学参数。通过分子对接模拟确定了配体的相互作用类型和取向。计算对接过程中MT-配体复合物的结合亲和力。在使用MT(PDBID:2Y9X)进行的计算研究中,我们发现配体在MT中占据了除活性位点之外的不同口袋。计算了值为−9和−7.9 kcal/mol的最佳结合能,并且对于MT–配体I和MT–配体II的配合物,具有最低均方根偏差(RMSD)的最佳姿势的MolDock得分分别为−172.70和−165.75 kcal/mol。计算模拟和实验分析表明,配体通过降低酶的活性来提高蘑菇酪氨酸酶的稳定性。在这方面,配体I显示出强大的抑制作用,并在酶的稳定性中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Biophysics
AIMS Biophysics BIOPHYSICS-
CiteScore
2.40
自引率
20.00%
发文量
16
审稿时长
8 weeks
期刊介绍: AIMS Biophysics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of biophysics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Biophysics welcomes, but not limited to, the papers from the following topics: · Structural biology · Biophysical technology · Bioenergetics · Membrane biophysics · Cellular Biophysics · Electrophysiology · Neuro-Biophysics · Biomechanics · Systems biology
期刊最新文献
Endoplasmic reticulum localization of phosphoinositide specific phospholipase C enzymes in U73122 cultured human osteoblasts Identification of potential SARS-CoV-2 papain-like protease inhibitors with the ability to interact with the catalytic triad Predicting factors and top gene identification for survival data of breast cancer A review of molecular biology detection methods for human adenovirus Natural bond orbital analysis of dication magnesium complexes [Mg(H2O)6]2+ and [[Mg(H2O)6](H2O)n]2+; n=1-4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1