{"title":"Rheology of Suspensions of Solid Particles in Liquids Thickened by Starch Nanoparticles","authors":"Ghazaleh Ghanaatpishehsanaei, R. Pal","doi":"10.3390/colloids7030052","DOIUrl":null,"url":null,"abstract":"The rheology of suspensions of solid particles in aqueous matrix liquids thickened by starch nanoparticles (SNP) was investigated. The SNP concentration varied from 9.89 to 34.60 wt% based on the aqueous matrix phase. The solids concentration of suspensions varied from 0 to 47 wt% (0 to 56 vol%). The suspensions at any given SNP concentration were generally Newtonian at low solids concentrations. At high solids concentrations, the suspensions were non-Newtonian shear-thinning. With the increase in the SNP concentration, the suspensions become non-Newtonian at a lower solids concentration. The rheological behavior of non-Newtonian suspensions could be described adequately with a power-law model. The consistency index of the suspension increased with the increase in solids concentration of the suspension at any given SNP concentration. The flow behavior index of suspensions was well below unity at high solids concentrations, indicating non-Newtonian shear-thinning behavior. The value of the flow behavior index decreased with the increase in solids concentration indicating an enhancement of shear-thinning in suspensions. The experimental viscosity and consistency data for Newtonian and non-Newtonian suspensions showed good agreement with the predictions of the Pal viscosity model for suspensions.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colloids7030052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
The rheology of suspensions of solid particles in aqueous matrix liquids thickened by starch nanoparticles (SNP) was investigated. The SNP concentration varied from 9.89 to 34.60 wt% based on the aqueous matrix phase. The solids concentration of suspensions varied from 0 to 47 wt% (0 to 56 vol%). The suspensions at any given SNP concentration were generally Newtonian at low solids concentrations. At high solids concentrations, the suspensions were non-Newtonian shear-thinning. With the increase in the SNP concentration, the suspensions become non-Newtonian at a lower solids concentration. The rheological behavior of non-Newtonian suspensions could be described adequately with a power-law model. The consistency index of the suspension increased with the increase in solids concentration of the suspension at any given SNP concentration. The flow behavior index of suspensions was well below unity at high solids concentrations, indicating non-Newtonian shear-thinning behavior. The value of the flow behavior index decreased with the increase in solids concentration indicating an enhancement of shear-thinning in suspensions. The experimental viscosity and consistency data for Newtonian and non-Newtonian suspensions showed good agreement with the predictions of the Pal viscosity model for suspensions.