The AI Revolution: From Linear Regression to ChatGPT and beyond and How It All Connects to Finance

IF 1.1 4区 经济学 Q3 BUSINESS, FINANCE Journal of Portfolio Management Pub Date : 2023-07-06 DOI:10.3905/jpm.2023.1.519
Irene E. Aldridge
{"title":"The AI Revolution: From Linear Regression to ChatGPT and beyond and How It All Connects to Finance","authors":"Irene E. Aldridge","doi":"10.3905/jpm.2023.1.519","DOIUrl":null,"url":null,"abstract":"This article surveys the evolution of machine learning from linear regression through ChatGPT to fully unsupervised learning. We illustrate the advantages of artificial intelligence (AI) over traditional methods with simple intuitive examples for the US equities markets. We also show that the AI inferences are consistent with classical finance models, such as the capital asset pricing model. We also describe how, unlike machine learning, true AI unsupervised models satisfy the optimal modeling characteristics. Most importantly, we show step by step how AI identifies and extracts signals from data.","PeriodicalId":53670,"journal":{"name":"Journal of Portfolio Management","volume":"49 1","pages":"64 - 77"},"PeriodicalIF":1.1000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Portfolio Management","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.3905/jpm.2023.1.519","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1

Abstract

This article surveys the evolution of machine learning from linear regression through ChatGPT to fully unsupervised learning. We illustrate the advantages of artificial intelligence (AI) over traditional methods with simple intuitive examples for the US equities markets. We also show that the AI inferences are consistent with classical finance models, such as the capital asset pricing model. We also describe how, unlike machine learning, true AI unsupervised models satisfy the optimal modeling characteristics. Most importantly, we show step by step how AI identifies and extracts signals from data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能革命:从线性回归到ChatGPT及其他,以及它如何与金融联系
本文调查了机器学习从通过ChatGPT的线性回归到完全无监督学习的演变。我们以美国股市的简单直观例子说明了人工智能(AI)相对于传统方法的优势。我们还表明,人工智能的推断与经典的金融模型一致,例如资本资产定价模型。我们还描述了与机器学习不同,真正的人工智能无监督模型如何满足最佳建模特征。最重要的是,我们逐步展示了人工智能如何识别和提取数据中的信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Portfolio Management
Journal of Portfolio Management Economics, Econometrics and Finance-Finance
CiteScore
2.20
自引率
28.60%
发文量
113
期刊介绍: Founded by Peter Bernstein in 1974, The Journal of Portfolio Management (JPM) is the definitive source of thought-provoking analysis and practical techniques in institutional investing. It offers cutting-edge research on asset allocation, performance measurement, market trends, risk management, portfolio optimization, and more. Each quarterly issue of JPM features articles by the most renowned researchers and practitioners—including Nobel laureates—whose works define modern portfolio theory.
期刊最新文献
Fixed Income Factors: Theory and Practice Peer Group Identification in Factor Portfolios: A Data-Driven Approach Factor Investing for Taxable Investors Return–Risk Analysis of Real Estate Tokens: An Asset Class of Its Own Sustainability Disclosure and Financial Performance: The Case of Private and Public Real Estate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1