Sumin Cho, Sunmin Jang, Donghan Lee, Yoonsang Ra, Dongik Kam, Jong Woo Kim, Do-Shik Shin, Kyoung Duck Seo, D. Choi
{"title":"Self-powered hybrid triboelectric–piezoelectric electronic skin based on P(VDF-TrFE) electrospun nanofibers for artificial sensory system","authors":"Sumin Cho, Sunmin Jang, Donghan Lee, Yoonsang Ra, Dongik Kam, Jong Woo Kim, Do-Shik Shin, Kyoung Duck Seo, D. Choi","doi":"10.1088/2631-6331/aca139","DOIUrl":null,"url":null,"abstract":"Piezoelectric sensors have been developed due to the self-powered sensing and flexibility and the promising potential applications in the electronic skin (e-skin) inspired by human skin. However, although the piezoelectric sensors have an excellent performance in detecting human movements, it is difficult to distinguish external mechanical stimuli such as tapping in a single structure, together. Here, we suggest a self-powered e-skin based on electrospun poly(vinylidene fluoride-trifluoroethylene), nanofiber hybrid triboelectric–piezoelectric sensor (E-HTPS), that can identify between human motions and external touch based on both triboelectric effect and piezoelectric effect. Triboelectric effect-based sensors have a good electrical output characteristic with various advantages of high-flexibility and simple working operation. Hence, the E-HTPS consists of two layers, triboelectric layer as a tactile sensor and piezoelectric layer as a human motion sensor. Therefore, we demonstrate that the E-HTPS can detect human movements and even finger touch with attached to the target body part. Consequently, the E-HTPS could provide an effective approach to designing the self-powered e-skin as an artificial sensory system for healthcare monitoring and soft robotics.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Composites and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-6331/aca139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 6
Abstract
Piezoelectric sensors have been developed due to the self-powered sensing and flexibility and the promising potential applications in the electronic skin (e-skin) inspired by human skin. However, although the piezoelectric sensors have an excellent performance in detecting human movements, it is difficult to distinguish external mechanical stimuli such as tapping in a single structure, together. Here, we suggest a self-powered e-skin based on electrospun poly(vinylidene fluoride-trifluoroethylene), nanofiber hybrid triboelectric–piezoelectric sensor (E-HTPS), that can identify between human motions and external touch based on both triboelectric effect and piezoelectric effect. Triboelectric effect-based sensors have a good electrical output characteristic with various advantages of high-flexibility and simple working operation. Hence, the E-HTPS consists of two layers, triboelectric layer as a tactile sensor and piezoelectric layer as a human motion sensor. Therefore, we demonstrate that the E-HTPS can detect human movements and even finger touch with attached to the target body part. Consequently, the E-HTPS could provide an effective approach to designing the self-powered e-skin as an artificial sensory system for healthcare monitoring and soft robotics.