Detection of Multiscale Center Point Objects Based on Parallel Network

Hao Chen, Hong Zheng, Xiaolong Li
{"title":"Detection of Multiscale Center Point Objects Based on Parallel Network","authors":"Hao Chen, Hong Zheng, Xiaolong Li","doi":"10.37965/jait.2020.0025","DOIUrl":null,"url":null,"abstract":"Anchor-based detectors are widely used in object detection. To improve the accuracy of object detection, multiple anchor boxes are intensively placed on the input image, yet. Most of which are invalid. Although the anchor-free method can reduce the number of useless anchor boxes, the invalid ones still occupy a high proportion. On this basis, this paper proposes a multi-scale center point object detection method based on parallel network to further reduce the number of useless anchor boxes. This study adopts the parallel network architecture of hourglass-104 and darknet-53 of which the first one outputs heatmaps to generate the center point for object feature location on the output attribute feature map of darknet-53. Combining feature pyramid and CIOU loss function this algorithm is trained and tested on MSCOCO dataset, increasing the detection rate of target location and the accuracy rate of small object detection. Though resembling the state-of-the-art two-stage detectors in overall object detection accuracy speed.","PeriodicalId":70996,"journal":{"name":"人工智能技术学报(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"人工智能技术学报(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.37965/jait.2020.0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Anchor-based detectors are widely used in object detection. To improve the accuracy of object detection, multiple anchor boxes are intensively placed on the input image, yet. Most of which are invalid. Although the anchor-free method can reduce the number of useless anchor boxes, the invalid ones still occupy a high proportion. On this basis, this paper proposes a multi-scale center point object detection method based on parallel network to further reduce the number of useless anchor boxes. This study adopts the parallel network architecture of hourglass-104 and darknet-53 of which the first one outputs heatmaps to generate the center point for object feature location on the output attribute feature map of darknet-53. Combining feature pyramid and CIOU loss function this algorithm is trained and tested on MSCOCO dataset, increasing the detection rate of target location and the accuracy rate of small object detection. Though resembling the state-of-the-art two-stage detectors in overall object detection accuracy speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于并行网络的多尺度中心点目标检测
基于锚的检测器在物体检测中得到了广泛的应用。然而,为了提高对象检测的准确性,在输入图像上密集地放置多个锚框。其中大部分无效。尽管无锚方法可以减少无用锚盒的数量,但无效锚盒仍然占据很高的比例。在此基础上,本文提出了一种基于并行网络的多尺度中心点目标检测方法,以进一步减少无用锚盒的数量。本研究采用沙漏-104和暗网-53的并行网络架构,其中第一个输出热图,在暗网-55的输出属性特征图上生成对象特征定位的中心点。将特征金字塔和CIOU损失函数相结合,在MSCOCO数据集上对该算法进行了训练和测试,提高了目标定位的检测率和小目标检测的准确率。尽管在整体物体检测精度和速度上类似于最先进的两级检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
Detection of Streaks in Astronomical Images Using Machine Learning An Optimal BDCNN ML Architecture for Car Make Model Prediction A Bio-Inspired Method For Breast Histopathology Image Classification Using Transfer Learning Convolutional Neural Networks for Automated Diagnosis of Diabetic Retinopathy in Fundus Images Automated Staging and Grading for Retinopathy of Prematurity on Indian Database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1