{"title":"Preparation and performance of homogenous braids-reinforced poly (p-phenylene terephthamide) hollow fiber membranes","authors":"Chun Wang, Dinghe Yan, Shubin Song, Jingjing Yan, Haolong Xue, Changfan Xiao","doi":"10.1515/epoly-2023-0062","DOIUrl":null,"url":null,"abstract":"Abstract A novel homogenous braid-reinforced (HBR) poly (p-phenylene terephthamide) (PPTA) hollow fiber membrane was prepared in this study. The effects of PPTA concentration on the morphologies and properties of the membranes were further investigated. The results showed that when the PPTA concentration was 2.0 wt%, the cross-sectional morphology of satisfactory interfacial bonding was achieved and the permeation was still maintained at about 200 (L·m−2·h−1) after ultrasonic vibration. In addition, the tensile force exceeded 600 N, which indicated that the homogeneous effect effectively improved the poor mechanical properties and interfacial bonding. In addition, the HBR PPTA hollow fiber membranes were applied to simulate the membrane bioreactor system to explore the control factors of membrane fouling. The results demonstrated that the average removal of total phosphorus and NH4 +–N was above 49% and 96%, respectively; meanwhile, the operating time was up to 120 days. Furthermore, it was easier to nearly remove the pollutants by chemical cleaning.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0062","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A novel homogenous braid-reinforced (HBR) poly (p-phenylene terephthamide) (PPTA) hollow fiber membrane was prepared in this study. The effects of PPTA concentration on the morphologies and properties of the membranes were further investigated. The results showed that when the PPTA concentration was 2.0 wt%, the cross-sectional morphology of satisfactory interfacial bonding was achieved and the permeation was still maintained at about 200 (L·m−2·h−1) after ultrasonic vibration. In addition, the tensile force exceeded 600 N, which indicated that the homogeneous effect effectively improved the poor mechanical properties and interfacial bonding. In addition, the HBR PPTA hollow fiber membranes were applied to simulate the membrane bioreactor system to explore the control factors of membrane fouling. The results demonstrated that the average removal of total phosphorus and NH4 +–N was above 49% and 96%, respectively; meanwhile, the operating time was up to 120 days. Furthermore, it was easier to nearly remove the pollutants by chemical cleaning.
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.