Hydrogenation of bio-oil in a needle-plate dielectric barrier discharge reactor

IF 2.1 4区 工程技术 Q3 ENERGY & FUELS Biofuels-Uk Pub Date : 2023-01-31 DOI:10.1080/17597269.2023.2173417
Weidong Zhao, Zhengxing Jin, Xiaolong Qi, Kiatsiriroat Tanongkiat, Junfeng Wang
{"title":"Hydrogenation of bio-oil in a needle-plate dielectric barrier discharge reactor","authors":"Weidong Zhao, Zhengxing Jin, Xiaolong Qi, Kiatsiriroat Tanongkiat, Junfeng Wang","doi":"10.1080/17597269.2023.2173417","DOIUrl":null,"url":null,"abstract":"Abstract A needle-plate dielectric barrier discharge reactor was constructed to achieve bio-oil hydrogenation under low temperature and normal pressure. According to the composition and content of rice husk bio-oil, seven model compounds were mixed up to prepare simulated bio-oil, and effects of operating voltage, gas flow rate and reaction time on the deoxygenation rate and high calorific value of simulated bio-oil were investigated. The results showed that the maximum deoxidation rate of 31.62% was achieved, with the high calorific value of bio-oil increased from 25.78 MJ/kg to 32.69 MJ/kg, and the pH value increased from 3.67 to 4.83, which confirmed the feasibility of using dielectric barrier discharge reaction to hydrogenate bio-oil under low temperature and normal pressure conditions. With energy consumption and energy conversion rate as indexes, the operation economy of bio-oil hydrogenation process in the needle-plate dielectric barrier discharge reactor was evaluated, calculation results showed that under the optimized operation conditions, energy consumption of 2.44 kW·h/kg and energy conversion rate of 40.87% were achieved.","PeriodicalId":56057,"journal":{"name":"Biofuels-Uk","volume":"14 1","pages":"775 - 783"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels-Uk","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17597269.2023.2173417","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A needle-plate dielectric barrier discharge reactor was constructed to achieve bio-oil hydrogenation under low temperature and normal pressure. According to the composition and content of rice husk bio-oil, seven model compounds were mixed up to prepare simulated bio-oil, and effects of operating voltage, gas flow rate and reaction time on the deoxygenation rate and high calorific value of simulated bio-oil were investigated. The results showed that the maximum deoxidation rate of 31.62% was achieved, with the high calorific value of bio-oil increased from 25.78 MJ/kg to 32.69 MJ/kg, and the pH value increased from 3.67 to 4.83, which confirmed the feasibility of using dielectric barrier discharge reaction to hydrogenate bio-oil under low temperature and normal pressure conditions. With energy consumption and energy conversion rate as indexes, the operation economy of bio-oil hydrogenation process in the needle-plate dielectric barrier discharge reactor was evaluated, calculation results showed that under the optimized operation conditions, energy consumption of 2.44 kW·h/kg and energy conversion rate of 40.87% were achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针板介质阻挡放电反应器中生物油的加氢反应
摘要建立了针板介质阻挡放电反应器,实现了低温常压下生物油加氢反应。根据稻壳生物油的组成和含量,将7种模型化合物混合制备模拟生物油,研究了操作电压、气体流量和反应时间对模拟生物油脱氧率和高热值的影响。结果表明:生物油的最高脱氧率为31.62%,生物油的高热值由25.78提高 MJ/kg至32.69 MJ/kg,pH值从3.67提高到4.83,证实了在低温常压条件下利用介质阻挡放电反应氢化生物油的可行性。以能耗和能量转化率为指标,对针板介质阻挡放电反应器中生物油加氢工艺的运行经济性进行了评价,计算结果表明,在优化的运行条件下,能耗为2.44 kW·h/kg,能量转化率达40.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biofuels-Uk
Biofuels-Uk Energy-Renewable Energy, Sustainability and the Environment
CiteScore
5.40
自引率
9.50%
发文量
56
期刊介绍: Current energy systems need a vast transformation to meet the key demands of the 21st century: reduced environmental impact, economic viability and efficiency. An essential part of this energy revolution is bioenergy. The movement towards widespread implementation of first generation biofuels is still in its infancy, requiring continued evaluation and improvement to be fully realised. Problems with current bioenergy strategies, for example competition over land use for food crops, do not yet have satisfactory solutions. The second generation of biofuels, based around cellulosic ethanol, are now in development and are opening up new possibilities for future energy generation. Recent advances in genetics have pioneered research into designer fuels and sources such as algae have been revealed as untapped bioenergy resources. As global energy requirements change and grow, it is crucial that all aspects of the bioenergy production process are streamlined and improved, from the design of more efficient biorefineries to research into biohydrogen as an energy carrier. Current energy infrastructures need to be adapted and changed to fulfil the promises of biomass for power generation. Biofuels provides a forum for all stakeholders in the bioenergy sector, featuring review articles, original research, commentaries, news, research and development spotlights, interviews with key opinion leaders and much more, with a view to establishing an international community of bioenergy communication. As biofuel research continues at an unprecedented rate, the development of new feedstocks and improvements in bioenergy production processes provide the key to the transformation of biomass into a global energy resource. With the twin threats of climate change and depleted fossil fuel reserves looming, it is vitally important that research communities are mobilized to fully realize the potential of bioenergy.
期刊最新文献
Comparative assessment of biochar produced from LDPE and neem leaves using batch and semi-batch biomass fuel-based reactors Bio-electricity production in a single-chamber microbial fuel cell using urine as a substrate Environmental footprint evaluation of Jatropha biodiesel production and utilization in Ethiopia: a comprehensive well-to-wheel life cycle analysis Potential of thermophilic bacteria isolated from cow dung-grass compost for bioethanol production using floral waste Enhancing biochar properties through doping: A comparative study of sugarcane bagasse and chicken feather
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1