C. Stoeckl , M.J. Bonino , C. Mileham , S.P. Regan , W. Theobald , T. Ebert , S. Sander
{"title":"Optimization of a short-pulse-driven Si Heα soft x-ray backlighter","authors":"C. Stoeckl , M.J. Bonino , C. Mileham , S.P. Regan , W. Theobald , T. Ebert , S. Sander","doi":"10.1016/j.hedp.2022.100973","DOIUrl":null,"url":null,"abstract":"<div><p>High backlighter brightness is important to maximize the number of detected photons in radiography experiments and to minimize the background while backlighting high-energy-density plasmas with strong self-emission. Several different configurations were tested to improve the brightness of the Si He<sub>α</sub> x-ray line emission at a photon energy of 1865 eV from high-energy (>1 kJ), short-pulse (∼20 ps), laser-driven backlighter targets. The emission from low-density SiO<sub>2</sub> foam targets, the effects of a laser prepulse, and Si targets with a CH “shield” that form a small cavity were compared to solid-density, flat Si targets. The CH “shield” targets showed the best performance with a>5×improvement in time-integrated emission and an x-ray pulse duration of ∼25 ps with no measurable spectral shift of the Si He<em><sub>α</sub></em> emission line. A conversion efficiency from laser light into Si He<em><sub>α</sub></em> photons on the order of 1 × 10<sup>–5</sup> was inferred from the data.</p></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"41 ","pages":"Article 100973"},"PeriodicalIF":1.6000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574181822000015","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 2
Abstract
High backlighter brightness is important to maximize the number of detected photons in radiography experiments and to minimize the background while backlighting high-energy-density plasmas with strong self-emission. Several different configurations were tested to improve the brightness of the Si Heα x-ray line emission at a photon energy of 1865 eV from high-energy (>1 kJ), short-pulse (∼20 ps), laser-driven backlighter targets. The emission from low-density SiO2 foam targets, the effects of a laser prepulse, and Si targets with a CH “shield” that form a small cavity were compared to solid-density, flat Si targets. The CH “shield” targets showed the best performance with a>5×improvement in time-integrated emission and an x-ray pulse duration of ∼25 ps with no measurable spectral shift of the Si Heα emission line. A conversion efficiency from laser light into Si Heα photons on the order of 1 × 10–5 was inferred from the data.
期刊介绍:
High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings.
Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.