We present findings from an experimental tuning campaign aimed at igniting larger DT cryogenic layered implosions using a dual frustum shaped hohlraum, denoted “frustraum”. The frustraum's distinctive shape reduces hohlraum wall losses while concurrently enhancing minimum capsule clearance with the hohlraum wall and sensitivity to pointing changes. Compared to current cylindrical hohlraum (6.4 × 11.24 mm), the frustraum has a wall area approximately 20 % smaller, resulting in a measured improvement in efficiency of around 12 %. Consequently, 12 % less laser energy is required to implode a capsule within the same acceleration timeframe. Conversely, directing the same laser energy into the frustraum yields higher ion temperatures within symmetry capsules, along with increased radiation temperatures and reduced implosion acceleration times compared to current cylindrical hohlraums.
Cylindrical implosion experiments are used to directly measure instability growth in a convergent geometry, providing a wealth of data for model validation. Double cylinders are a natural extension of the platform and enable measurements at a classically unstable interface, the outer surface of the inner cylinder, which experiences no ablative stabilization from the laser drive. However, the utility of this platform relies upon maintaining adequate axial uniformity of the inner cylinder during the implosion. Although previous smaller-scale double cylinder experiments exhibited acceptable levels of axial uniformity, radiation-hydrodynamics simulations of larger-scale double cylinders predict more axial non-uniformity induced by the impedance mismatch as the shock wraps around the axial ends of the inner cylinder. A mechanism to reduce axial non-uniformity in these larger double cylinder implosions is presented, and preliminary experimental data confirms the efficacy of the selected mitigation approach.
For many decades the running joke in fusion research has been that “fusion” is twenty years away and always will be. Yet, in 2023 we find ourselves in a position where we can talk about the milestones of burning plasmas, fusion ignition, and target energy gain greater than unity in the past tense – a situation that is remarkable! This paper tells some of the story of the applied physics challenges that needed to be overcome to achieve these milestones and the strategy our team followed. Things did not always go well and some practical lessons learned are part of this story. The data shows, getting to a burning plasma in late 2020 and early 2021 was a key tipping-point, after which ignition (August 8, 2021) and target gain (December 5, 2022) were rapidly achieved.
The possibility of utilizing defected C3N monolayers as the electrodes of supercapacitors (SCs) was investigated in the current study by performing DFT computations. A single-vacancy C3N monolayer (SC3NML), a double-vacancy C3N monolayer (DC3NM) and a pure C3N monolayer (PC3NML) were investigated. The charge plots, quantum capacitance (QC) and the density of state of SC3NML, DC3NM and PC3NML were also studied. Based on the results, the QC of SC3NML and DC3NM at voltages between -0.80 and 0.80 V was more compared to the QC of PC3NML. It was possible to use SC3NML as a negative electrode and DC3NM as a positive electrode, both of which were p-type semi-conductors. The stored charge in the SC3NML and DC3NM was higher compared to the stored charge in PC3NML at voltages 0 to 0.8 V. The charge stored in DC3NM was higher than the stored charge in SC3NML and PC3NML. Finally, DC3NML layer can be regarded as an encouraging electrode for application in SCs.
The spin effects on the propagation characteristic of circularly polarized electromagnetic (EM) wave in high density strongly magnetized plasma are discussed based on the the classical hydrodynamical model of relativistic spin plasma. The dielectric coefficients for right-hand circularly polarized (RCP) and left-hand circularly polarized (LCP) waves are obtained. Results show that the spin effects can affect the propagation characteristic of circularly polarized EM wave dramatically. Provided the spin effect is strong enough, LCP waves can also propagate in the magnetized over-dense plasma, while RCP waves may not. The strength of spin effects can be enhanced by increasing the plasma density or/and EM wave intensity.
Measurement of the areal density and velocity of the carbon ablator shell during peak burn in inertial confinement fusion give powerful information on the state of the ablator and where in the trajectory of implosion it reaches peak burn. Detailed comparison of the absolute densities and velocities of the carbon in implosions has been prevented by the limited ability to resolve shot-to-shot variation within a shot series or within a campaign. A new approach using a single, ultra fast (10 ps) gamma ray channel can massively reduce uncertainties and will provide insights on improvements to target and drive variables. Small improvements in these experimental design parameters may result in much greater yields.
Laser-driven “inverted corona” fusion targets have attracted interest as a low-convergence neutron source and platform for studying kinetic physics. The scheme consists of a hollow or gas-filled spherical shell made of deuterated plastic. The shell has one or more laser entrance holes (LEH), resembling a spherical hohlraum. The laser passes through the LEH’s and illuminates the interior surface of the shell, ablating a plasma that travels inward towards the target center. Long ion mean free paths in the converging plasma can lead to significant interpenetration, atomic mix, and other kinetic effects. In this work we report on numerical simulations of inverted corona targets using the kinetic-ion, fluid–electron hybrid particle-in-cell (PIC) approach in 2D RZ geometry. 2D simulations suggest that shape effects do not have a significant impact on plasma evolution and observed yield trends are primarily the result of 1D kinetic mix mechanisms. Simulations are also compared against available experimental data recorded at the OMEGA laser facility. In particular, synthetic x-ray emission images show good qualitative agreement with experimental results, albeit with an apparent timing discrepancy for the two-sided vacuum target. More generally, we demonstrate the potential of hybrid-PIC simulations for full-system modeling and experimental design, including collisional absorption of laser energy, plasma evolution, mix, and fusion burn.