A. M. Möller, Susan A. M. Vermeer, Susanne E. Baumgartner
{"title":"Cutting Through the Comment Chaos: A Supervised Machine Learning Approach to Identifying Relevant YouTube Comments","authors":"A. M. Möller, Susan A. M. Vermeer, Susanne E. Baumgartner","doi":"10.1177/08944393231173895","DOIUrl":null,"url":null,"abstract":"Social scientists often study comments on YouTube to learn about people’s attitudes towards and experiences of online videos. However, not all YouTube comments are relevant in the sense that they reflect individuals’ thoughts about, or experiences of the content of a video or its artist/maker. Therefore, the present paper employs Supervised Machine Learning to automatically assess comments written in response to music videos in terms of their relevance. For those comments that are relevant, we also assess why they are relevant. Our results indicate that most YouTube comments are relevant (approx. 78%). Among those, most are relevant because they include a positive evaluation of the video, describe a viewer’s personal experience related to the video, or express a sense of community among the video viewers. We conclude that Supervised Machine Learning is a suitable method to find those YouTube comments that are relevant to scholars studying viewers’ reactions to online videos, and we present suggestions for scholars wanting to apply the same technique in their own projects.","PeriodicalId":49509,"journal":{"name":"Social Science Computer Review","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Science Computer Review","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/08944393231173895","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Social scientists often study comments on YouTube to learn about people’s attitudes towards and experiences of online videos. However, not all YouTube comments are relevant in the sense that they reflect individuals’ thoughts about, or experiences of the content of a video or its artist/maker. Therefore, the present paper employs Supervised Machine Learning to automatically assess comments written in response to music videos in terms of their relevance. For those comments that are relevant, we also assess why they are relevant. Our results indicate that most YouTube comments are relevant (approx. 78%). Among those, most are relevant because they include a positive evaluation of the video, describe a viewer’s personal experience related to the video, or express a sense of community among the video viewers. We conclude that Supervised Machine Learning is a suitable method to find those YouTube comments that are relevant to scholars studying viewers’ reactions to online videos, and we present suggestions for scholars wanting to apply the same technique in their own projects.
期刊介绍:
Unique Scope Social Science Computer Review is an interdisciplinary journal covering social science instructional and research applications of computing, as well as societal impacts of informational technology. Topics included: artificial intelligence, business, computational social science theory, computer-assisted survey research, computer-based qualitative analysis, computer simulation, economic modeling, electronic modeling, electronic publishing, geographic information systems, instrumentation and research tools, public administration, social impacts of computing and telecommunications, software evaluation, world-wide web resources for social scientists. Interdisciplinary Nature Because the Uses and impacts of computing are interdisciplinary, so is Social Science Computer Review. The journal is of direct relevance to scholars and scientists in a wide variety of disciplines. In its pages you''ll find work in the following areas: sociology, anthropology, political science, economics, psychology, computer literacy, computer applications, and methodology.