Applications of artificial intelligence in dementia research.

Cambridge prisms, Precision medicine Pub Date : 2022-12-06 eCollection Date: 2023-01-01 DOI:10.1017/pcm.2022.10
Kelvin K F Tsoi, Pingping Jia, N Maritza Dowling, Jodi R Titiner, Maude Wagner, Ana W Capuano, Michael C Donohue
{"title":"Applications of artificial intelligence in dementia research.","authors":"Kelvin K F Tsoi, Pingping Jia, N Maritza Dowling, Jodi R Titiner, Maude Wagner, Ana W Capuano, Michael C Donohue","doi":"10.1017/pcm.2022.10","DOIUrl":null,"url":null,"abstract":"<p><p>More than 50 million older people worldwide are suffering from dementia, and this number is estimated to increase to 150 million by 2050. Greater caregiver burdens and financial impacts on the healthcare system are expected as we wait for an effective treatment for dementia. Researchers are constantly exploring new therapies and screening approaches for the early detection of dementia. Artificial intelligence (AI) is widely applied in dementia research, including machine learning and deep learning methods for dementia diagnosis and progression detection. Computerized apps are also convenient tools for patients and caregivers to monitor cognitive function changes. Furthermore, social robots can potentially provide daily life support or guidance for the elderly who live alone. This review aims to provide an overview of AI applications in dementia research. We divided the applications into three categories according to different stages of cognitive impairment: (1) cognitive screening and training, (2) diagnosis and prognosis for dementia, and (3) dementia care and interventions. There are numerous studies on AI applications for dementia research. However, one challenge that remains is comparing the effectiveness of different AI methods in real clinical settings.</p>","PeriodicalId":72491,"journal":{"name":"Cambridge prisms, Precision medicine","volume":" ","pages":"e9"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10953738/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge prisms, Precision medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/pcm.2022.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

More than 50 million older people worldwide are suffering from dementia, and this number is estimated to increase to 150 million by 2050. Greater caregiver burdens and financial impacts on the healthcare system are expected as we wait for an effective treatment for dementia. Researchers are constantly exploring new therapies and screening approaches for the early detection of dementia. Artificial intelligence (AI) is widely applied in dementia research, including machine learning and deep learning methods for dementia diagnosis and progression detection. Computerized apps are also convenient tools for patients and caregivers to monitor cognitive function changes. Furthermore, social robots can potentially provide daily life support or guidance for the elderly who live alone. This review aims to provide an overview of AI applications in dementia research. We divided the applications into three categories according to different stages of cognitive impairment: (1) cognitive screening and training, (2) diagnosis and prognosis for dementia, and (3) dementia care and interventions. There are numerous studies on AI applications for dementia research. However, one challenge that remains is comparing the effectiveness of different AI methods in real clinical settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能在痴呆症研究中的应用
全世界有 5000 多万老年人患有痴呆症,预计到 2050 年,这一数字将增至 1.5 亿。在我们等待有效治疗痴呆症的过程中,护理人员的负担和对医疗保健系统的经济影响预计会越来越大。研究人员正在不断探索早期检测痴呆症的新疗法和筛查方法。人工智能(AI)被广泛应用于痴呆症研究,包括用于痴呆症诊断和进展检测的机器学习和深度学习方法。计算机应用程序也是患者和护理人员监测认知功能变化的便捷工具。此外,社交机器人有可能为独居老人提供日常生活支持或指导。本综述旨在概述人工智能在痴呆症研究中的应用。我们根据认知障碍的不同阶段将应用分为三类:(1) 认知筛查和训练,(2) 痴呆症的诊断和预后,以及 (3) 痴呆症护理和干预。关于人工智能在痴呆症研究中的应用的研究不胜枚举。然而,比较不同人工智能方法在实际临床环境中的有效性仍是一项挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Challenges and solutions to system-wide use of precision oncology as the standard of care paradigm. Cross-population applications of genomics to understand the risk of multifactorial traits involving inflammation and immunity. Precision therapy in dilated cardiomyopathy: Pipedream or paradigm shift? Clinical translational research of liquid biopsy applications in prostate cancer and other urological cancers Heterogeneity in precision oncology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1