P. Scholzen, A. Rajaei, J. Brimmers, B. Hallstedt, T. Bergs, C. Broeckmann
{"title":"Influence of heat treatment and densification on the load capacity of sintered gears","authors":"P. Scholzen, A. Rajaei, J. Brimmers, B. Hallstedt, T. Bergs, C. Broeckmann","doi":"10.1080/00325899.2022.2138171","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n The powder metallurgical manufacturing of gears offers a promising opportunity in terms of reducing the noise emission and increasing the power density. Sintered gears weigh less than conventional gears and potentially have a better noise-vibration-harshness behaviour, due to the remaining porosity. However, the potential of sintered gears for highly loaded applications is not fully utilised yet. Six variants of surface densified and case-hardened sintered gears from Astaloy Mo85 are tested to analyse the impact of the densification and case hardening depths on both the tooth root and flank load bearing capacities. Experimental investigations including metallography and computer tomography are carried out to characterise the microstructure. Furthermore, a simulation model is developed to quantitatively describe the residual stress and hardness profiles after the heat treatment. The load bearing capacity was improved by increasing the densification and case hardening depths, where the effect of the case hardening was identified to be predominant.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"66 1","pages":"86 - 93"},"PeriodicalIF":1.9000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2022.2138171","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT
The powder metallurgical manufacturing of gears offers a promising opportunity in terms of reducing the noise emission and increasing the power density. Sintered gears weigh less than conventional gears and potentially have a better noise-vibration-harshness behaviour, due to the remaining porosity. However, the potential of sintered gears for highly loaded applications is not fully utilised yet. Six variants of surface densified and case-hardened sintered gears from Astaloy Mo85 are tested to analyse the impact of the densification and case hardening depths on both the tooth root and flank load bearing capacities. Experimental investigations including metallography and computer tomography are carried out to characterise the microstructure. Furthermore, a simulation model is developed to quantitatively describe the residual stress and hardness profiles after the heat treatment. The load bearing capacity was improved by increasing the densification and case hardening depths, where the effect of the case hardening was identified to be predominant.
期刊介绍:
Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.