{"title":"Modeling, Vibration Analysis and Fabrication of Micropumps Based on Piezoelectric Transducers","authors":"Yanfang Guan, Xiangxin Meng, Yansheng Liu, Mingyang Bai, Fengqian Xu","doi":"10.20855/ijav.2020.25.31670","DOIUrl":null,"url":null,"abstract":"The parametric and vibrational characteristics of PZTs (Piezoelectric Transducers) with different diameters before and after coupling are discussed by finite element analysis. It is shown that the vibration stability of the piezoelectric transducer decreases with increasing driving frequency. The PZT’s variation of maximum displacement with frequency shows the same trend for different driving conditions according to vibration measurement under conditions of both free and forced vibration (before and after sealing with the pump body). The maximum displacement under forced vibration is less than that under free vibration. The maximum displacement is inversely proportional to the diameter of the transducer and directly proportional to the driving voltage under both free and forced vibration. Micropumps with diffuser/nozzle microvalves are designed and fabricated with different external diameters of the PZTs. Finally, the flow rate and pressure of the micropumps are measured, which are consistent with the vibrational results. Moreover, the maximum displacement is larger under a square-wave driving signal, followed by a sine-wave signal, and then a triangle-wave signal. For a PZT with an external diameter of 12 mm, the maximum flow rate and pressure value are 150 μl/min and 346 Pa, respectively, under sine-wave driving at 100 Vpp driving voltage.","PeriodicalId":49185,"journal":{"name":"International Journal of Acoustics and Vibration","volume":"25 1","pages":"383-391"},"PeriodicalIF":0.8000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Acoustics and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.20855/ijav.2020.25.31670","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 4
Abstract
The parametric and vibrational characteristics of PZTs (Piezoelectric Transducers) with different diameters before and after coupling are discussed by finite element analysis. It is shown that the vibration stability of the piezoelectric transducer decreases with increasing driving frequency. The PZT’s variation of maximum displacement with frequency shows the same trend for different driving conditions according to vibration measurement under conditions of both free and forced vibration (before and after sealing with the pump body). The maximum displacement under forced vibration is less than that under free vibration. The maximum displacement is inversely proportional to the diameter of the transducer and directly proportional to the driving voltage under both free and forced vibration. Micropumps with diffuser/nozzle microvalves are designed and fabricated with different external diameters of the PZTs. Finally, the flow rate and pressure of the micropumps are measured, which are consistent with the vibrational results. Moreover, the maximum displacement is larger under a square-wave driving signal, followed by a sine-wave signal, and then a triangle-wave signal. For a PZT with an external diameter of 12 mm, the maximum flow rate and pressure value are 150 μl/min and 346 Pa, respectively, under sine-wave driving at 100 Vpp driving voltage.
期刊介绍:
The International Journal of Acoustics and Vibration (IJAV) is the refereed open-access journal of the International Institute of Acoustics and Vibration (IIAV). The IIAV is a non-profit international scientific society founded in 1995. The primary objective of the Institute is to advance the science of acoustics and vibration by creating an international organization that is responsive to the needs of scientists and engineers concerned with acoustics and vibration problems all around the world.
Manuscripts of articles, technical notes and letters-to-the-editor should be submitted to the Editor-in-Chief via the on-line submission system. Authors wishing to submit an article need to log in on the IJAV website first. Users logged into the website are able to submit new articles, track the status of their articles already submitted, upload revised articles, responses and/or rebuttals to reviewers, figures, biographies, photographs, copyright transfer agreements, and send comments to the editor. Each time the status of an article submitted changes, the author will also be notified automatically by email.
IIAV members (in good standing for at least six months) can publish in IJAV free of charge and their papers will be displayed on-line immediately after they have been edited and laid-out.
Non-IIAV members will be required to pay a mandatory Article Processing Charge (APC) of $200 USD if the manuscript is accepted for publication after review. The APC fee allows IIAV to make your research freely available to all readers using the Open Access model.
In addition, Non-IIAV members who pay an extra voluntary publication fee (EVPF) of $500 USD will be granted expedited publication in the IJAV Journal and their papers can be displayed on the Internet after acceptance. If the $200 USD (APC) publication fee is not honored, papers will not be published. Authors who do not pay the voluntary fixed fee of $500 USD will have their papers published but there may be a considerable delay.
The English text of the papers must be of high quality. If the text submitted is of low quality the manuscript will be more than likely rejected. For authors whose first language is not English, we recommend having their manuscripts reviewed and edited prior to submission by a native English speaker with scientific expertise. There are many commercial editing services which can provide this service at a cost to the authors.