Convexity-Preserving Rational Cubic Zipper Fractal Interpolation Curves and Surfaces

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Mathematical & Computational Applications Pub Date : 2023-06-10 DOI:10.3390/mca28030074
Vijay, A. Chand
{"title":"Convexity-Preserving Rational Cubic Zipper Fractal Interpolation Curves and Surfaces","authors":"Vijay, A. Chand","doi":"10.3390/mca28030074","DOIUrl":null,"url":null,"abstract":"A class of zipper fractal functions is more versatile than corresponding classes of traditional and fractal interpolants due to a binary vector called a signature. A zipper fractal function constructed through a zipper iterated function system (IFS) allows one to use negative and positive horizontal scalings. In contrast, a fractal function constructed with an IFS uses positive horizontal scalings only. This article introduces some novel classes of continuously differentiable convexity-preserving zipper fractal interpolation curves and surfaces. First, we construct zipper fractal interpolation curves for the given univariate Hermite interpolation data. Then, we generate zipper fractal interpolation surfaces over a rectangular grid without using any additional knots. These surface interpolants converge uniformly to a continuously differentiable bivariate data-generating function. For a given Hermite bivariate dataset and a fixed choice of scaling and shape parameters, one can obtain a wide variety of zipper fractal surfaces by varying signature vectors in both the x direction and y direction. Some numerical illustrations are given to verify the theoretical convexity results.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28030074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A class of zipper fractal functions is more versatile than corresponding classes of traditional and fractal interpolants due to a binary vector called a signature. A zipper fractal function constructed through a zipper iterated function system (IFS) allows one to use negative and positive horizontal scalings. In contrast, a fractal function constructed with an IFS uses positive horizontal scalings only. This article introduces some novel classes of continuously differentiable convexity-preserving zipper fractal interpolation curves and surfaces. First, we construct zipper fractal interpolation curves for the given univariate Hermite interpolation data. Then, we generate zipper fractal interpolation surfaces over a rectangular grid without using any additional knots. These surface interpolants converge uniformly to a continuously differentiable bivariate data-generating function. For a given Hermite bivariate dataset and a fixed choice of scaling and shape parameters, one can obtain a wide variety of zipper fractal surfaces by varying signature vectors in both the x direction and y direction. Some numerical illustrations are given to verify the theoretical convexity results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
保凸有理三次Zipper分形插值曲线和曲面
由于一种称为签名的二进制矢量,一类拉链分形函数比相应的传统和分形插值类更通用。通过拉链迭代函数系统(IFS)构建的拉链分形函数允许使用负和正水平尺度。相反,用IFS构造的分形函数只使用正的水平尺度。本文介绍了几类新的连续可微保凸拉链分形插值曲线和曲面。首先,我们为给定的单变量Hermite插值数据构造拉链分形插值曲线。然后,我们在不使用任何额外节点的情况下,在矩形网格上生成拉链分形插值曲面。这些曲面插值一致收敛于一个连续可微的二元数据生成函数。对于给定的Hermite二元数据集和固定的缩放和形状参数选择,可以通过在x方向和y方向上改变特征向量来获得各种各样的拉链分形表面。给出了一些数值例子来验证理论上的凸性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
期刊最新文献
Asymptotic Behavior of Solutions to a Nonlinear Swelling Soil System with Time Delay and Variable Exponents Exploring the Potential of Mixed Fourier Series in Signal Processing Applications Using One-Dimensional Smooth Closed-Form Functions with Compact Support: A Comprehensive Tutorial Conservation Laws and Symmetry Reductions of the Hunter–Saxton Equation via the Double Reduction Method FE2 Computations with Deep Neural Networks: Algorithmic Structure, Data Generation, and Implementation A Computational Fluid Dynamics-Based Model for Assessing Rupture Risk in Cerebral Arteries with Varying Aneurysm Sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1