Shouhua Zhang, Jiehan Zhou, Erhua Wang, Hong Zhang, Mu Gu, Susanna Pirttikangas
{"title":"State of the art on vibration signal processing towards data-driven gear fault diagnosis","authors":"Shouhua Zhang, Jiehan Zhou, Erhua Wang, Hong Zhang, Mu Gu, Susanna Pirttikangas","doi":"10.1049/cim2.12064","DOIUrl":null,"url":null,"abstract":"<p>Gear fault diagnosis (GFD) based on vibration signals is a popular research topic in industry and academia. This paper provides a comprehensive summary and systematic review of vibration signal-based GFD methods in recent years, thereby providing insights for relevant researchers. The authors first introduce the common gear faults and their vibration signal characteristics. The authors overview and compare the common feature extraction methods, such as adaptive mode decomposition, deconvolution, mathematical morphological filtering, and entropy. For each method, this paper introduces its idea, analyses its advantages and disadvantages, and reviews its application in GFD. Then the authors present machine learning-based methods for gear fault recognition and emphasise deep learning-based methods. Moreover, the authors compare different fault recognition methods. Finally, the authors discuss the challenges and opportunities towards data-driven GFD.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"4 4","pages":"249-266"},"PeriodicalIF":2.5000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12064","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 5
Abstract
Gear fault diagnosis (GFD) based on vibration signals is a popular research topic in industry and academia. This paper provides a comprehensive summary and systematic review of vibration signal-based GFD methods in recent years, thereby providing insights for relevant researchers. The authors first introduce the common gear faults and their vibration signal characteristics. The authors overview and compare the common feature extraction methods, such as adaptive mode decomposition, deconvolution, mathematical morphological filtering, and entropy. For each method, this paper introduces its idea, analyses its advantages and disadvantages, and reviews its application in GFD. Then the authors present machine learning-based methods for gear fault recognition and emphasise deep learning-based methods. Moreover, the authors compare different fault recognition methods. Finally, the authors discuss the challenges and opportunities towards data-driven GFD.
期刊介绍:
IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly.
The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).