{"title":"Cotton Yield and Quality Response to Row Pattern and Seeding Rate","authors":"R. Sorensen, M. Lamb, C. Butts","doi":"10.56454/qlip5101","DOIUrl":null,"url":null,"abstract":"Cotton (Gossypium hirsutum L.) is a major rotational crop associated with peanut (Arachis hypogaea L.) cropping systems in Southwest Georgia. Since peanut is typically planted in twin-rows for greater yield and grade, use of the same twin-row planter for cotton would be cost effective. It is not clear what effect row pattern would have on cotton lint yield using drip irrigation. The objectives were to compare cotton yield when planted in different row patterns, with two plant densities, at multiple locations, and irrigated with drip and sprinkler irrigation systems. Cotton was planted in single- and twin-row patterns at recommended (1X) and half-recommended (0.5X) seeding rates (93,000 and 54,600 seeds/ha, respectively). Irrigation systems were subsurface drip irrigation (SSDI), shallow subsurface drip irrigation (S3DI), and overhead sprinkler. Row pattern (single- or twin-row), seeding rate, or irrigation system had no effect on lint yield. There were fiber quality differences, probably due to cultivar, but there was no consistency to draw any conclusions. For consistent year-to-year yield and economics, it is recommended to plant cotton near 1X seeding rates using single- or twin-rows with either drip or sprinkler irrigation systems. Seeding rates reduced to half or lower than the recommended rate may increase risk of lower yields and revenue that may not be covered by money saved using less seed.","PeriodicalId":15558,"journal":{"name":"Journal of cotton science","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cotton science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56454/qlip5101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Cotton (Gossypium hirsutum L.) is a major rotational crop associated with peanut (Arachis hypogaea L.) cropping systems in Southwest Georgia. Since peanut is typically planted in twin-rows for greater yield and grade, use of the same twin-row planter for cotton would be cost effective. It is not clear what effect row pattern would have on cotton lint yield using drip irrigation. The objectives were to compare cotton yield when planted in different row patterns, with two plant densities, at multiple locations, and irrigated with drip and sprinkler irrigation systems. Cotton was planted in single- and twin-row patterns at recommended (1X) and half-recommended (0.5X) seeding rates (93,000 and 54,600 seeds/ha, respectively). Irrigation systems were subsurface drip irrigation (SSDI), shallow subsurface drip irrigation (S3DI), and overhead sprinkler. Row pattern (single- or twin-row), seeding rate, or irrigation system had no effect on lint yield. There were fiber quality differences, probably due to cultivar, but there was no consistency to draw any conclusions. For consistent year-to-year yield and economics, it is recommended to plant cotton near 1X seeding rates using single- or twin-rows with either drip or sprinkler irrigation systems. Seeding rates reduced to half or lower than the recommended rate may increase risk of lower yields and revenue that may not be covered by money saved using less seed.
期刊介绍:
The multidisciplinary, refereed journal contains articles that improve our understanding of cotton science. Publications may be compilations of original research, syntheses, reviews, or notes on original research or new techniques or equipment.