Magnetic performance and microstructure characterisation of powder metallurgy Fe–6.5 wt-% Si high-silicon steel

IF 1.9 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Powder Metallurgy Pub Date : 2021-12-13 DOI:10.1080/00325899.2021.2014650
Q. Qin, G. Li, Fang Yang, Pei Li, Cun-guang Chen, J. Hao, Zhimeng Guo
{"title":"Magnetic performance and microstructure characterisation of powder metallurgy Fe–6.5 wt-% Si high-silicon steel","authors":"Q. Qin, G. Li, Fang Yang, Pei Li, Cun-guang Chen, J. Hao, Zhimeng Guo","doi":"10.1080/00325899.2021.2014650","DOIUrl":null,"url":null,"abstract":"ABSTRACT Powder metallurgy high-silicon steel strip (Fe–6.5 wt-% Si) was prepared by directly sintering followed by rolling using gas atomised powder with low oxygen content. Due to its poor formability, the gas atomised powder was directly sintered with something heavy of 1 kg overlaid on powder top. The relative density of sintered samples was about 94.1% and the porosity was 5.9%. The pore pinning effect prevented the formation of extremely large grains during sintering, which was beneficial for subsequent rolling. The grain size was controlled in the range of 100–300 μm. After cold rolling, a large number of sub-grain boundaries and deformation bands were generated, which increased the strength to 1190 MPa. It was worth noting that these two would disappear after annealing. Instead, ordered B2 and D03 phases were formed, and the texture of high-silicon steel was mainly {100}<110>. A low iron loss W10/50 value of 0.55 W kg−1 was achieved.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"65 1","pages":"296 - 307"},"PeriodicalIF":1.9000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2021.2014650","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Powder metallurgy high-silicon steel strip (Fe–6.5 wt-% Si) was prepared by directly sintering followed by rolling using gas atomised powder with low oxygen content. Due to its poor formability, the gas atomised powder was directly sintered with something heavy of 1 kg overlaid on powder top. The relative density of sintered samples was about 94.1% and the porosity was 5.9%. The pore pinning effect prevented the formation of extremely large grains during sintering, which was beneficial for subsequent rolling. The grain size was controlled in the range of 100–300 μm. After cold rolling, a large number of sub-grain boundaries and deformation bands were generated, which increased the strength to 1190 MPa. It was worth noting that these two would disappear after annealing. Instead, ordered B2 and D03 phases were formed, and the texture of high-silicon steel was mainly {100}<110>. A low iron loss W10/50 value of 0.55 W kg−1 was achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粉末冶金Fe–6.5wt-%Si高硅钢的磁性能和组织特征
摘要采用低含氧量的气体雾化粉末,通过直接烧结和轧制制备了粉末冶金高硅钢带(Fe–6.5wt%Si)。由于其成型性差,气体雾化粉末直接用1的重物烧结 kg覆盖在粉末顶部。烧结样品的相对密度约为94.1%,孔隙率为5.9%。孔钉扎效应防止了烧结过程中形成超大晶粒,有利于后续轧制。晶粒度控制在100–300之间 μm。冷轧后,产生了大量的亚晶界和变形带,使强度提高到1190 MPa。值得注意的是,这两者在退火后会消失。相反,形成了有序的B2和D03相,高硅钢的织构主要为{100}。低铁损W10/50值为0.55 W 达到kg−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Powder Metallurgy
Powder Metallurgy 工程技术-冶金工程
CiteScore
2.90
自引率
7.10%
发文量
30
审稿时长
3 months
期刊介绍: Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.
期刊最新文献
Can children with negative polysomnography results always be non-OSA controls? Advancement of thermoelectric performances through the dispersion of expanded graphene on p-type BiSbTe alloys Synthesis of Li1.3Al0.3Ti1.7(PO4)3-coated LiCoO2 cathode powder for all-solid-state lithium batteries Development of TiCN-Co-Cr3C2-Si3N4-based cermets with improved hardness and toughness for cutting tool applications Grain refinement and coercivity enhancement of sintered Nd–Fe–B alloys by doping eutectic alloy (Nd0.75Pr0.25)70Cu30.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1