{"title":"Study on Impact of Mutual Coupling on Performance of Dual Polarized Phased Array Antenna","authors":"S. Benny, S. Sahoo, A. Mukundan","doi":"10.7716/aem.v11i2.1843","DOIUrl":null,"url":null,"abstract":"This study involves the determination of the impact of mutual coupling between antenna elements on the performance of a dual-polarized, wide-angle scanning, phased array antenna for weather radar applications. Weather radars require dual linearly polarized antennas with low cross-polarization, and a narrow beam phased array for wide scanning angle. For this simulation-based study, a microstrip dual linearly polarized 2x20 phased array antenna operating at S-band (2.65 to 3.0 GHz) is designed. This antenna has been designed to have a cross-polarization level less than -45 dB at both polarizations and for the scan angle range of -55o to 55o, which is better than most of the existing dual-pol phased array antennas. This antenna has been used to analyze the impact of mutual coupling on cross-polarization, beamwidth, and antenna gain at various scan angles. Mutual coupling is studied in terms of antenna active element pattern and the corresponding cross-polarization value as well as the active reflection coefficient and impedance values for inter-element spacings of 0.4λ and 0.5λ. It has been found in this study that cross-polarization levels of the whole array (at various scan angles) are affected significantly because of mutual coupling between elements.","PeriodicalId":44653,"journal":{"name":"Advanced Electromagnetics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7716/aem.v11i2.1843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study involves the determination of the impact of mutual coupling between antenna elements on the performance of a dual-polarized, wide-angle scanning, phased array antenna for weather radar applications. Weather radars require dual linearly polarized antennas with low cross-polarization, and a narrow beam phased array for wide scanning angle. For this simulation-based study, a microstrip dual linearly polarized 2x20 phased array antenna operating at S-band (2.65 to 3.0 GHz) is designed. This antenna has been designed to have a cross-polarization level less than -45 dB at both polarizations and for the scan angle range of -55o to 55o, which is better than most of the existing dual-pol phased array antennas. This antenna has been used to analyze the impact of mutual coupling on cross-polarization, beamwidth, and antenna gain at various scan angles. Mutual coupling is studied in terms of antenna active element pattern and the corresponding cross-polarization value as well as the active reflection coefficient and impedance values for inter-element spacings of 0.4λ and 0.5λ. It has been found in this study that cross-polarization levels of the whole array (at various scan angles) are affected significantly because of mutual coupling between elements.
期刊介绍:
Advanced Electromagnetics, is electronic peer-reviewed open access journal that publishes original research articles as well as review articles in all areas of electromagnetic science and engineering. The aim of the journal is to become a premier open access source of high quality research that spans the entire broad field of electromagnetics from classic to quantum electrodynamics.