{"title":"The circular bioeconomy: Its elements and role in European bioeconomy clusters","authors":"Paul Stegmann , Marc Londo , Martin Junginger","doi":"10.1016/j.rcrx.2019.100029","DOIUrl":null,"url":null,"abstract":"<div><p>Biomass is projected to play a key role in meeting global climate targets. To achieve a resource-efficient biomass use, European bioeconomy strategies increasingly consider the concept of a circular bioeconomy (CBE). We define the term CBE via a literature review and analyze the concept’s role in north-west European bioeconomy clusters through interviews. We identify strategies regarding the clusters’ feedstock and product focus, and investigate what role biorefineries, circular solutions, recycling and cascading play. Finally, we discuss gaps in CBE literature and the potential contributions of the CBE to sustainability. The analyzed bioeconomy clusters move towards a CBE by increasingly considering residues and wastes as a resource, developing integrated biorefineries and focusing more on material and high value applications of biomass. However, there is so far only little focus on the end-of-life of bio-based products, i.e. on circular product design, recycling and cascading. Key challenges for implementing circular strategies are policies and regulations, costs and the current small size of bio-based markets. Amongst the product sectors the interviewees identified as promising for the bioeconomy, plastics and construction & building materials have most recycling and cascading potential. While the CBE could contribute to improving the sustainability of the bioeconomy, the concept is not inherently sustainable and its potential trade-offs need to be addressed. Especially social aspects, cascading, circular product design, and aspects related to product use seem to be underrepresented in CBE literature, while the topics biorefinery, wastes and residues as well as waste management are significantly covered.</p></div>","PeriodicalId":36714,"journal":{"name":"Resources, Conservation and Recycling: X","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rcrx.2019.100029","citationCount":"316","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources, Conservation and Recycling: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590289X1930026X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 316
Abstract
Biomass is projected to play a key role in meeting global climate targets. To achieve a resource-efficient biomass use, European bioeconomy strategies increasingly consider the concept of a circular bioeconomy (CBE). We define the term CBE via a literature review and analyze the concept’s role in north-west European bioeconomy clusters through interviews. We identify strategies regarding the clusters’ feedstock and product focus, and investigate what role biorefineries, circular solutions, recycling and cascading play. Finally, we discuss gaps in CBE literature and the potential contributions of the CBE to sustainability. The analyzed bioeconomy clusters move towards a CBE by increasingly considering residues and wastes as a resource, developing integrated biorefineries and focusing more on material and high value applications of biomass. However, there is so far only little focus on the end-of-life of bio-based products, i.e. on circular product design, recycling and cascading. Key challenges for implementing circular strategies are policies and regulations, costs and the current small size of bio-based markets. Amongst the product sectors the interviewees identified as promising for the bioeconomy, plastics and construction & building materials have most recycling and cascading potential. While the CBE could contribute to improving the sustainability of the bioeconomy, the concept is not inherently sustainable and its potential trade-offs need to be addressed. Especially social aspects, cascading, circular product design, and aspects related to product use seem to be underrepresented in CBE literature, while the topics biorefinery, wastes and residues as well as waste management are significantly covered.