Placebo Selection in Survey Experiments: An Agnostic Approach

IF 4.7 2区 社会学 Q1 POLITICAL SCIENCE Political Analysis Pub Date : 2021-06-14 DOI:10.1017/pan.2021.16
Ethan Porter, Y. Velez
{"title":"Placebo Selection in Survey Experiments: An Agnostic Approach","authors":"Ethan Porter, Y. Velez","doi":"10.1017/pan.2021.16","DOIUrl":null,"url":null,"abstract":"Abstract Although placebo conditions are ubiquitous in survey experiments, little evidence guides common practices for their use and selection. How should scholars choose and construct placebos? First, we review the role of placebos in published survey experiments, finding that placebos are used inconsistently. Then, drawing on the medical literature, we clarify the role that placebos play in accounting for nonspecific effects (NSEs), or the effects of ancillary features of experiments. We argue that, in the absence of precise knowledge of NSEs that placebos are adjusting for, researchers should average over a corpus of many placebos. We demonstrate this agnostic approach to placebo construction through the use of GPT-2, a generative language model trained on a database of over 1 million internet news pages. Using GPT-2, we devise 5,000 distinct placebos and administer two experiments (N = 2,975). Our results illustrate how researchers can minimize their role in placebo selection through automated processes. We conclude by offering tools for incorporating computer-generated placebo text vignettes into survey experiments and developing recommendations for best practice.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"30 1","pages":"481 - 494"},"PeriodicalIF":4.7000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/pan.2021.16","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Analysis","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1017/pan.2021.16","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract Although placebo conditions are ubiquitous in survey experiments, little evidence guides common practices for their use and selection. How should scholars choose and construct placebos? First, we review the role of placebos in published survey experiments, finding that placebos are used inconsistently. Then, drawing on the medical literature, we clarify the role that placebos play in accounting for nonspecific effects (NSEs), or the effects of ancillary features of experiments. We argue that, in the absence of precise knowledge of NSEs that placebos are adjusting for, researchers should average over a corpus of many placebos. We demonstrate this agnostic approach to placebo construction through the use of GPT-2, a generative language model trained on a database of over 1 million internet news pages. Using GPT-2, we devise 5,000 distinct placebos and administer two experiments (N = 2,975). Our results illustrate how researchers can minimize their role in placebo selection through automated processes. We conclude by offering tools for incorporating computer-generated placebo text vignettes into survey experiments and developing recommendations for best practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调查实验中的安慰剂选择:一个不可知论的方法
虽然安慰剂条件在调查实验中普遍存在,但很少有证据指导其使用和选择的共同实践。学者应该如何选择和构建安慰剂?首先,我们回顾了安慰剂在已发表的调查实验中的作用,发现安慰剂的使用不一致。然后,根据医学文献,我们澄清了安慰剂在解释非特异性效应(nse)或实验辅助特征的影响方面所起的作用。我们认为,在缺乏对安慰剂正在调整的nse的精确知识的情况下,研究人员应该在许多安慰剂的语料库中进行平均。我们通过使用GPT-2来证明这种不可知的安慰剂构建方法,GPT-2是一种生成语言模型,在超过100万个互联网新闻页面的数据库上训练。使用GPT-2,我们设计了5000种不同的安慰剂,并进行了两个实验(N = 2975)。我们的研究结果说明了研究人员如何通过自动化过程最小化他们在安慰剂选择中的作用。最后,我们提供了将计算机生成的安慰剂文本片段纳入调查实验的工具,并为最佳实践提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Political Analysis
Political Analysis POLITICAL SCIENCE-
CiteScore
8.80
自引率
3.70%
发文量
30
期刊介绍: Political Analysis chronicles these exciting developments by publishing the most sophisticated scholarship in the field. It is the place to learn new methods, to find some of the best empirical scholarship, and to publish your best research.
期刊最新文献
Assessing Performance of Martins's and Sampson's Formulae for Calculation of LDL-C in Indian Population: A Single Center Retrospective Study. On Finetuning Large Language Models Explaining Recruitment to Extremism: A Bayesian Hierarchical Case–Control Approach Implementation Matters: Evaluating the Proportional Hazard Test’s Performance Face Detection, Tracking, and Classification from Large-Scale News Archives for Analysis of Key Political Figures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1