StreamNet: A WAE for White Matter Streamline Analysis

IF 0.1 Q4 REMOTE SENSING GeoMedia Pub Date : 2022-09-03 DOI:10.48550/arXiv.2209.01498
Andrew Lizarraga, K. Narr, Kristy A. Donald, S. Joshi
{"title":"StreamNet: A WAE for White Matter Streamline Analysis","authors":"Andrew Lizarraga, K. Narr, Kristy A. Donald, S. Joshi","doi":"10.48550/arXiv.2209.01498","DOIUrl":null,"url":null,"abstract":"We present StreamNet, an autoencoder architecture for the analysis of the highly heterogeneous geometry of large collections of white matter streamlines. This proposed framework takes advantage of geometry-preserving properties of the Wasserstein-1 metric in order to achieve direct encoding and reconstruction of entire bundles of streamlines. We show that the model not only accurately captures the distributive structures of streamlines in the population, but is also able to achieve superior reconstruction performance between real and synthetic streamlines. Experimental model performance is evaluated on white matter streamlines resulting from T1-weighted diffusion imaging of 40 healthy controls using recent state of the art bundle comparison metric that measures fiber-shape similarities.","PeriodicalId":40680,"journal":{"name":"GeoMedia","volume":"1 1","pages":"172-182"},"PeriodicalIF":0.1000,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeoMedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.01498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 2

Abstract

We present StreamNet, an autoencoder architecture for the analysis of the highly heterogeneous geometry of large collections of white matter streamlines. This proposed framework takes advantage of geometry-preserving properties of the Wasserstein-1 metric in order to achieve direct encoding and reconstruction of entire bundles of streamlines. We show that the model not only accurately captures the distributive structures of streamlines in the population, but is also able to achieve superior reconstruction performance between real and synthetic streamlines. Experimental model performance is evaluated on white matter streamlines resulting from T1-weighted diffusion imaging of 40 healthy controls using recent state of the art bundle comparison metric that measures fiber-shape similarities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
StreamNet:用于白物质流线分析的WAE
我们介绍了StreamNet,这是一种自动编码器架构,用于分析大量白质流线的高度异构几何结构。该框架利用Wasserstein-1度量的几何保持特性,实现对整束流线的直接编码和重建。我们表明,该模型不仅准确地捕捉了种群中流线的分布结构,而且能够在真实流线和合成流线之间实现卓越的重建性能。使用测量纤维形状相似性的最新技术束比较度量,对40名健康对照的T1加权扩散成像产生的白质流线上的实验模型性能进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
GeoMedia
GeoMedia REMOTE SENSING-
自引率
0.00%
发文量
11
审稿时长
8 weeks
期刊最新文献
A Comparative Study of Graph Neural Networks for Shape Classification in Neuroimaging StreamNet: A WAE for White Matter Streamline Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1