Absolute calibration of the spectral responsivity of thermal detectors in the near-infrared (NIR) and mid-infrared (MIR) regions by using blackbody radiation

IF 0.8 Q4 INSTRUMENTS & INSTRUMENTATION Journal of Sensors and Sensor Systems Pub Date : 2021-04-23 DOI:10.5194/JSSS-10-109-2021
Tobias T. Pohl, P. Meindl, L. Werner, U. Johannsen, D. Taubert, C. Monte, J. Hollandt
{"title":"Absolute calibration of the spectral responsivity of thermal detectors in the near-infrared (NIR) and mid-infrared (MIR) regions by using blackbody radiation","authors":"Tobias T. Pohl, P. Meindl, L. Werner, U. Johannsen, D. Taubert, C. Monte, J. Hollandt","doi":"10.5194/JSSS-10-109-2021","DOIUrl":null,"url":null,"abstract":"Abstract. The Physikalisch-Technische Bundesanstalt (PTB) has set up an additional measurement approach for the absolute calibration of the spectral responsivity of detectors in the near-infrared (NIR) and mid-infrared (MIR) spectral range. This alternative method uses the radiation of a blackbody operating at about 1200 K with a precision aperture. The blackbody radiation can be calculated by Planck's law and is additionally spectrally selected by accurately characterized optical bandpass filters. Thus, a calibration of the spectral responsivity of a detector with respect to irradiance can be achieved at the bandpass wavelength of the applied transmission filters. If the aperture of the detector is known, the spectral responsivity can also be calculated with respect to radiant power. Thermopile detectors with known aperture size were calibrated in terms of\ntheir spectral responsivity with several bandpass filters in the spectral\nrange between 1.5  µ m up to 14  µ m with relative standard\nmeasurement uncertainties between 5 % and 19 %. The obtained results\nare consistent with previous calibrations at PTB's national primary detector standard. Therefore, this additional measurement approach is a further validation of the existing primary method which is based on a cryogenic radiometer and extends the usable wavelength range.","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/JSSS-10-109-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract. The Physikalisch-Technische Bundesanstalt (PTB) has set up an additional measurement approach for the absolute calibration of the spectral responsivity of detectors in the near-infrared (NIR) and mid-infrared (MIR) spectral range. This alternative method uses the radiation of a blackbody operating at about 1200 K with a precision aperture. The blackbody radiation can be calculated by Planck's law and is additionally spectrally selected by accurately characterized optical bandpass filters. Thus, a calibration of the spectral responsivity of a detector with respect to irradiance can be achieved at the bandpass wavelength of the applied transmission filters. If the aperture of the detector is known, the spectral responsivity can also be calculated with respect to radiant power. Thermopile detectors with known aperture size were calibrated in terms of their spectral responsivity with several bandpass filters in the spectral range between 1.5  µ m up to 14  µ m with relative standard measurement uncertainties between 5 % and 19 %. The obtained results are consistent with previous calibrations at PTB's national primary detector standard. Therefore, this additional measurement approach is a further validation of the existing primary method which is based on a cryogenic radiometer and extends the usable wavelength range.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用黑体辐射对近红外(NIR)和中红外(MIR)区域热探测器的光谱响应度进行绝对定标
摘要德国联邦物理技术研究院(PTB)建立了一种额外的测量方法,用于近红外(NIR)和中红外(MIR)光谱范围内探测器光谱响应度的绝对校准。这种替代方法使用在大约1200下工作的黑体的辐射 K,具有精确光圈。黑体辐射可以通过普朗克定律计算,并通过精确表征的光学带通滤波器进行光谱选择。因此,可以在所应用的透射滤波器的带通波长下实现检测器的光谱响应度相对于辐照度的校准。如果探测器的孔径是已知的,那么光谱响应度也可以相对于辐射功率来计算。根据已知孔径的热电堆探测器的光谱响应度,用几个带通滤波器在1.5之间的光谱范围内进行了校准  µm至14  µm,相对标准测量不确定度在5之间 % 和19 %. 所获得的结果与PTB国家初级探测器标准的先前校准一致。因此,这种额外的测量方法是对现有主要方法的进一步验证,该方法基于低温辐射计,并扩展了可用的波长范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sensors and Sensor Systems
Journal of Sensors and Sensor Systems INSTRUMENTS & INSTRUMENTATION-
CiteScore
2.30
自引率
10.00%
发文量
26
审稿时长
23 weeks
期刊介绍: Journal of Sensors and Sensor Systems (JSSS) is an international open-access journal dedicated to science, application, and advancement of sensors and sensors as part of measurement systems. The emphasis is on sensor principles and phenomena, measuring systems, sensor technologies, and applications. The goal of JSSS is to provide a platform for scientists and professionals in academia – as well as for developers, engineers, and users – to discuss new developments and advancements in sensors and sensor systems.
期刊最新文献
Human activity recognition system using wearable accelerometers for classification of leg movements: a first, detailed approach Rapid characterisation of mixtures of hydrogen and natural gas by means of ultrasonic time-delay estimation Extraction of nanometer-scale displacements from noisy signals at frequencies down to 1 mHz obtained by differential laser Doppler vibrometry Concatenated Bragg grating fiber-optic sensors for simultaneous measurement of curvature, temperature, and axial pressure Concept, simulation, and fabrication of inverted grating structures for surface plasmon resonance sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1