P. Głuchowski, R. Nikonkov, D. Kujawa, W. Stręk, T. Murauskas, A. Pakalniškis, A. Kareiva, Andrii Yaremkevych, O. Fesenko, Aliaksandr Zhaludkevich, D. Karpinsky
{"title":"Controlling the Magnetic Properties of La0.9A0.1Mn0.9Cr0.1O3 (A: Li, K, Na) Powders and Ceramics by Alkali Ions Doping","authors":"P. Głuchowski, R. Nikonkov, D. Kujawa, W. Stręk, T. Murauskas, A. Pakalniškis, A. Kareiva, Andrii Yaremkevych, O. Fesenko, Aliaksandr Zhaludkevich, D. Karpinsky","doi":"10.3390/magnetochemistry9060140","DOIUrl":null,"url":null,"abstract":"Nanocrystalline La0.9A0.1Mn0.9Cr0.1O3 (A: Li, K, Na) powders have been synthesized by combustion method. The powders were used to prepare ceramics by high-pressure low-temperature sintering technique. For all samples the structure, elemental composition and morphology were studied using X-ray diffraction (XRD), Raman spectroscopy, Energy-Dispersive X-ray Spectroscopy (EDS) and Scanning electron microscopy (SEM). Magnetic properties were studied using magnetometry methods and the valency changes of the cations after alkali ions doping were studied using X-ray photoelectron spectroscopy (XPS). The influence of the sintering pressure on the structural and magnetic properties of the manganites doped with different alkali ions and chromium was also investigated. Magnetization properties were studied as a function of sintering pressure and type of the dopant. Chemical doping with alkali ions as well as external pressure significantly changed the magnetic properties of the compounds. It was found that the magnetic properties of the manganites could be predictably modified through the use of a suitable dopant element.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9060140","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Nanocrystalline La0.9A0.1Mn0.9Cr0.1O3 (A: Li, K, Na) powders have been synthesized by combustion method. The powders were used to prepare ceramics by high-pressure low-temperature sintering technique. For all samples the structure, elemental composition and morphology were studied using X-ray diffraction (XRD), Raman spectroscopy, Energy-Dispersive X-ray Spectroscopy (EDS) and Scanning electron microscopy (SEM). Magnetic properties were studied using magnetometry methods and the valency changes of the cations after alkali ions doping were studied using X-ray photoelectron spectroscopy (XPS). The influence of the sintering pressure on the structural and magnetic properties of the manganites doped with different alkali ions and chromium was also investigated. Magnetization properties were studied as a function of sintering pressure and type of the dopant. Chemical doping with alkali ions as well as external pressure significantly changed the magnetic properties of the compounds. It was found that the magnetic properties of the manganites could be predictably modified through the use of a suitable dopant element.
期刊介绍:
Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.