Estimation of ultimate bearing capacity of bored piles using machine learning models

IF 2.4 Q2 GEOSCIENCES, MULTIDISCIPLINARY VIETNAM JOURNAL OF EARTH SCIENCES Pub Date : 2022-05-28 DOI:10.15625/2615-9783/17177
Binh Thai Pham, Dam Duc Nguyen, Quynh-Anh Bui Thi, Manh Duc Nguyen, Thanh Tien Vu, Indra Prakash
{"title":"Estimation of ultimate bearing capacity of bored piles using machine learning models","authors":"Binh Thai Pham, Dam Duc Nguyen, Quynh-Anh Bui Thi, Manh Duc Nguyen, Thanh Tien Vu, Indra Prakash","doi":"10.15625/2615-9783/17177","DOIUrl":null,"url":null,"abstract":"The ultimate bearing capacity of bored piles is an essential parameter in foundation design of structure. In the present study, three Machine Learning (ML) methods namely Adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM) and Artificial Neural Network (ANN) were utilized to estimate bearing capacity of bored piles based on limited engineering parameters of pile and soil obtained from 75 test sites in Vietnam. These parameters include pile diameter, pile length, tensile strength of main longitudinal steel bar, compressive strength of concrete, average SPT index at the tip of the pile, average SPT index at the pile body. Validation of the methods was verified using standard statistical metrics namely Root Mean Square Error (RMSE) and Correlation coefficient (R). The results show that all the proposed models have good potential in predicting correctly bearing capacity of bored piles on training data (R>0.93) and on testing data (R>0.88) but performance of the SVM model is the best (R:0.985 (training) and R:0.958 (testing). Thus SVM model can be used for the accurate prediction of ultimate bearing capacity of bored piles for proper designing of the civil engineering structure foundation.","PeriodicalId":23639,"journal":{"name":"VIETNAM JOURNAL OF EARTH SCIENCES","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VIETNAM JOURNAL OF EARTH SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/2615-9783/17177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

The ultimate bearing capacity of bored piles is an essential parameter in foundation design of structure. In the present study, three Machine Learning (ML) methods namely Adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM) and Artificial Neural Network (ANN) were utilized to estimate bearing capacity of bored piles based on limited engineering parameters of pile and soil obtained from 75 test sites in Vietnam. These parameters include pile diameter, pile length, tensile strength of main longitudinal steel bar, compressive strength of concrete, average SPT index at the tip of the pile, average SPT index at the pile body. Validation of the methods was verified using standard statistical metrics namely Root Mean Square Error (RMSE) and Correlation coefficient (R). The results show that all the proposed models have good potential in predicting correctly bearing capacity of bored piles on training data (R>0.93) and on testing data (R>0.88) but performance of the SVM model is the best (R:0.985 (training) and R:0.958 (testing). Thus SVM model can be used for the accurate prediction of ultimate bearing capacity of bored piles for proper designing of the civil engineering structure foundation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习模型的钻孔灌注桩极限承载力估算
钻孔灌注桩的极限承载力是结构基础设计中的一个重要参数。本文采用自适应神经模糊推理系统(ANFIS)、支持向量机(SVM)和人工神经网络(ANN)三种机器学习(ML)方法,基于越南75个试验点的有限桩土工程参数,对钻孔灌注桩的承载力进行了估计。这些参数包括桩径、桩长、主纵钢筋抗拉强度、混凝土抗压强度、桩端平均SPT指数、桩身平均SPT指数。采用标准统计指标均方根误差(RMSE)和相关系数(R)验证了方法的有效性。结果表明,所提出的模型在训练数据(R>0.93)和测试数据(R>0.88)上都有很好的预测钻孔灌注桩承载力的潜力,但SVM模型的性能最好(R:0.985(训练)和R:0.958(测试))。利用支持向量机模型可以准确预测钻孔灌注桩的极限承载力,为土木工程结构基础的合理设计提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
VIETNAM JOURNAL OF EARTH SCIENCES
VIETNAM JOURNAL OF EARTH SCIENCES GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
20.00%
发文量
0
期刊最新文献
Effects of drought on enzyme activities and hotspot distribution along plant roots Geotechnical properties of natural sand-mixed granulated blast furnace slag applied to the sand compaction pile method Faecal contamination and its relationship with some environmental variables of four urban rivers in inner Hanoi city, Vietnam Prediction of hotspots pattern in Kalimantan using copula-based quantile regression and probabilistic model: a study of precipitation and dry spells across varied ENSO conditions Radiological risk assessment and characteristics of 210Po in selected water sources in Quang Nam and Da Nang, Vietnam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1