Lucas B. de Faria, G. F. Teixeira, A. C. F. Alves, J. Linares, S. Oliveira, A. Motheo, F. Colmati
{"title":"Electrochemical Degradation of Diuron by Anodic Oxidation on a Commercial Ru0.3Ti0.7O2 Anode in a Sulfate Medium","authors":"Lucas B. de Faria, G. F. Teixeira, A. C. F. Alves, J. Linares, S. Oliveira, A. Motheo, F. Colmati","doi":"10.3390/chemengineering7040073","DOIUrl":null,"url":null,"abstract":"This work presents the electrochemical degradation of the herbicide Diuron by anodic oxidation on a Ti/Ru0.3Ti0.7O2 metal mixed oxide anode using sulfate as the electrolyte. The study includes the influence of Diuron concentration and current density on anodic oxidation. The results evidence a first-order degradation, with the highest capacity achieved at 40 mA cm−2 and at an initial Diuron concentration of 38 mg L−1. Nevertheless, in terms of efficiency and energy demand, the operation at 10 mA cm−2 is favored due to the more efficient and less energy-consuming condition. To discern the optimum design and operation conditions, this work presents the results of a preliminary technical–economic analysis, demonstrating that, to minimize the total costs of the system, it is recommended to seek the most efficient conditions, i.e., the conditions demanding the lowest applied charges with the highest Diuron degradation. At the same time, attention must be given to the required cell voltage to not increase excessively the operating costs.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering7040073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents the electrochemical degradation of the herbicide Diuron by anodic oxidation on a Ti/Ru0.3Ti0.7O2 metal mixed oxide anode using sulfate as the electrolyte. The study includes the influence of Diuron concentration and current density on anodic oxidation. The results evidence a first-order degradation, with the highest capacity achieved at 40 mA cm−2 and at an initial Diuron concentration of 38 mg L−1. Nevertheless, in terms of efficiency and energy demand, the operation at 10 mA cm−2 is favored due to the more efficient and less energy-consuming condition. To discern the optimum design and operation conditions, this work presents the results of a preliminary technical–economic analysis, demonstrating that, to minimize the total costs of the system, it is recommended to seek the most efficient conditions, i.e., the conditions demanding the lowest applied charges with the highest Diuron degradation. At the same time, attention must be given to the required cell voltage to not increase excessively the operating costs.
本文研究了以硫酸盐为电解液,在Ti/Ru0.3Ti0.7O2金属混合氧化物阳极上阳极氧化降解除草剂迪乌隆。研究了Diuron浓度和电流密度对阳极氧化的影响。结果证明了一级降解,在40 mA cm−2和38 mg L−1的初始Diuron浓度下达到最高容量。然而,在效率和能源需求方面,由于效率更高,能耗更低,10毫安cm−2的操作更受青睐。为了确定最佳的设计和运行条件,本工作提出了初步的技术经济分析结果,表明为了使系统的总成本最小化,建议寻求最有效的条件,即要求最低的施加费用和最高的Diuron降解的条件。同时,必须注意所需的电池电压,以免过度增加运行成本。