AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for SARS-CoV-2 detection

Likun Zhang, Zhengyang Lei, Chufan Xiao, Zhicheng Du, Chenyao Jiang, Xi Yuan, Qiuyue Hu, Shiyao Zhai, Lulu Xu, Changyue Liu, Xiao-Yu Zhong, Haifei Guan, Muhammad Hassan, I. Gul, V. Pandey, Xinhui Xing, Canyang Zhang, Qian He, Peiwu Qin
{"title":"AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for SARS-CoV-2 detection","authors":"Likun Zhang, Zhengyang Lei, Chufan Xiao, Zhicheng Du, Chenyao Jiang, Xi Yuan, Qiuyue Hu, Shiyao Zhai, Lulu Xu, Changyue Liu, Xiao-Yu Zhong, Haifei Guan, Muhammad Hassan, I. Gul, V. Pandey, Xinhui Xing, Canyang Zhang, Qian He, Peiwu Qin","doi":"10.3389/fsens.2022.1015223","DOIUrl":null,"url":null,"abstract":"Integrating artificial intelligence with SARS-CoV-2 diagnostics can help in the timely execution of pandemic control and monitoring plans. To improve the efficiency of the diagnostic process, this study aims to classify fluorescent images via traditional machine learning and deep learning-based transfer learning. A previous study reported a CRISPR-Cas13a system combined with total internal reflection fluorescence microscopy (TIRFM) to detect the existence and concentrations of SARS-CoV-2 by fluorescent images. However, the lack of professional software and excessive manual labor hinder the practicability of the system. Here, we construct a fluorescent image dataset and develop an AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for the rapid diagnosis of SARS-CoV-2. Our study proposes Fluorescent Images Classification Transfer learning based on DenseNet-121 (FICTransDense), an approach that uses TIRF images (before and after sample introduction, respectively) for preprocessing, including outlier exclusion and setting and division preprocessing (i.e., SDP). Classification results indicate that the FICTransDense and Decision Tree algorithms outperform other approaches on the SDP dataset. Most of the algorithms benefit from the proposed SDP technique in terms of Accuracy, Recall, F1 Score, and Precision. The use of AI-boosted CRISPR-Cas13a and TIRFM systems facilitates rapid monitoring and diagnosis of SARS-CoV-2.","PeriodicalId":93754,"journal":{"name":"Frontiers in sensors","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsens.2022.1015223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Integrating artificial intelligence with SARS-CoV-2 diagnostics can help in the timely execution of pandemic control and monitoring plans. To improve the efficiency of the diagnostic process, this study aims to classify fluorescent images via traditional machine learning and deep learning-based transfer learning. A previous study reported a CRISPR-Cas13a system combined with total internal reflection fluorescence microscopy (TIRFM) to detect the existence and concentrations of SARS-CoV-2 by fluorescent images. However, the lack of professional software and excessive manual labor hinder the practicability of the system. Here, we construct a fluorescent image dataset and develop an AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for the rapid diagnosis of SARS-CoV-2. Our study proposes Fluorescent Images Classification Transfer learning based on DenseNet-121 (FICTransDense), an approach that uses TIRF images (before and after sample introduction, respectively) for preprocessing, including outlier exclusion and setting and division preprocessing (i.e., SDP). Classification results indicate that the FICTransDense and Decision Tree algorithms outperform other approaches on the SDP dataset. Most of the algorithms benefit from the proposed SDP technique in terms of Accuracy, Recall, F1 Score, and Precision. The use of AI-boosted CRISPR-Cas13a and TIRFM systems facilitates rapid monitoring and diagnosis of SARS-CoV-2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能增强CRISPR-Cas13a和全内反射荧光显微镜系统检测SARS-CoV-2
将人工智能与严重急性呼吸系统综合征冠状病毒2型诊断相结合,有助于及时执行疫情控制和监测计划。为了提高诊断过程的效率,本研究旨在通过传统的机器学习和基于深度学习的迁移学习对荧光图像进行分类。先前的一项研究报道了CRISPR-Cas13a系统与全内反射荧光显微镜(TIRFM)相结合,通过荧光图像检测严重急性呼吸系统综合征冠状病毒2型的存在和浓度。然而,缺乏专业的软件和过多的体力劳动阻碍了该系统的实用性。在这里,我们构建了一个荧光图像数据集,并开发了一个AI增强的CRISPR-Cas13a和全内反射荧光显微镜系统,用于快速诊断严重急性呼吸系统综合征冠状病毒2型。我们的研究提出了基于DenseNet-121(FICTransDense)的荧光图像分类转移学习,这是一种使用TIRF图像(分别在样本引入之前和之后)进行预处理的方法,包括异常值排除、设置和划分预处理(即SDP)。分类结果表明,FICTransDense和决策树算法在SDP数据集上的性能优于其他方法。在准确性、召回率、F1分数和精度方面,大多数算法都受益于所提出的SDP技术。人工智能增强的CRISPR-Cas13a和TIRFM系统的使用有助于快速监测和诊断严重急性呼吸系统综合征冠状病毒2型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Thought leaders in sensor research: volume 1 Electronic tongue made of gelatin self-supporting films on printed electrodes to detect lactose Learning control for body caudal undulation with soft sensory feedback Erratum: AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for SARS-CoV-2 detection Evaluation of a point-of-use device used for autoantibody analysis and its potential for following microcystin leucine-arginine exposure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1