{"title":"COMPACTNESS AND STRUCTURE OF ZERO-STATES FOR UNORIENTED AVILES–GIGA FUNCTIONALS","authors":"M. Goldman, B. Merlet, Marc Pegon, S. Serfaty","doi":"10.1017/s1474748023000075","DOIUrl":null,"url":null,"abstract":"\n Motivated by some models of pattern formation involving an unoriented director field in the plane, we study a family of unoriented counterparts to the Aviles–Giga functional. We introduce a nonlinear \n \n \n \n$\\operatorname {\\mathrm {curl}}$\n\n \n operator for such unoriented vector fields as well as a family of even entropies which we call ‘trigonometric entropies’. Using these tools, we show two main theorems which parallel some results in the literature on the classical Aviles–Giga energy. The first is a compactness result for sequences of configurations with uniformly bounded energies. The second is a complete characterization of zero-states, that is, the limit configurations when the energies go to 0. These are Lipschitz continuous away from a locally finite set of points, near which they form either a vortex pattern or a disclination with degree 1/2. The proof is based on a combination of regularity theory together with techniques coming from the study of the Ginzburg–Landau energy. Our methods provide alternative proofs in the classical Aviles–Giga context.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748023000075","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Motivated by some models of pattern formation involving an unoriented director field in the plane, we study a family of unoriented counterparts to the Aviles–Giga functional. We introduce a nonlinear
$\operatorname {\mathrm {curl}}$
operator for such unoriented vector fields as well as a family of even entropies which we call ‘trigonometric entropies’. Using these tools, we show two main theorems which parallel some results in the literature on the classical Aviles–Giga energy. The first is a compactness result for sequences of configurations with uniformly bounded energies. The second is a complete characterization of zero-states, that is, the limit configurations when the energies go to 0. These are Lipschitz continuous away from a locally finite set of points, near which they form either a vortex pattern or a disclination with degree 1/2. The proof is based on a combination of regularity theory together with techniques coming from the study of the Ginzburg–Landau energy. Our methods provide alternative proofs in the classical Aviles–Giga context.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.