{"title":"An online quality detection method with ensemble learning on imbalance data for wave soldering","authors":"Hanpeng Gao, Yu Guo, Shaohua Huang, Jian Xie, Daoyuan Liu, Tao Wu, Xu Tian","doi":"10.1115/1.4063068","DOIUrl":null,"url":null,"abstract":"\n Online detection of wave soldering is an important method of inspecting defective products in the workshop. Accurate quality detection can reduce production costs and provide support for quality warning in wave soldering process. However, there are still problems of improving the detection accuracy for defect class. Although class imbalance in data can be addressed by data level methods such as over-sampling and under-sampling, these methods destroy the integrity of the original data set and may cause information loss and overfitting problems. In order to solve the above problems, this article focuses on how to design a new loss function that fuses class weights from focal loss (FS) and sample weights form AdaBoost to improve attention to the minority samples without changing data distribution. In this way, a FS-AdaBoost-RegNet model based on transfer learning is constructed to enhance the detection accuracy in industrial environment. Finally, the images of the wave soldering from an electronic assembly workshop are taken to validate the performance of the proposed method. The experiment on 941 testing samples of the imbalance datasets showed that the FS-AdaBoost-RegNet model with new loss function reached the overall accuracy of 98.39%, the overall recall of 96.19%. The results proved that the proposed method promotes the ability to identify defect class compared with other methods","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063068","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Online detection of wave soldering is an important method of inspecting defective products in the workshop. Accurate quality detection can reduce production costs and provide support for quality warning in wave soldering process. However, there are still problems of improving the detection accuracy for defect class. Although class imbalance in data can be addressed by data level methods such as over-sampling and under-sampling, these methods destroy the integrity of the original data set and may cause information loss and overfitting problems. In order to solve the above problems, this article focuses on how to design a new loss function that fuses class weights from focal loss (FS) and sample weights form AdaBoost to improve attention to the minority samples without changing data distribution. In this way, a FS-AdaBoost-RegNet model based on transfer learning is constructed to enhance the detection accuracy in industrial environment. Finally, the images of the wave soldering from an electronic assembly workshop are taken to validate the performance of the proposed method. The experiment on 941 testing samples of the imbalance datasets showed that the FS-AdaBoost-RegNet model with new loss function reached the overall accuracy of 98.39%, the overall recall of 96.19%. The results proved that the proposed method promotes the ability to identify defect class compared with other methods
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping