C. Luna-Palomera, J. Domínguez-Viveros, Guadalupe Nelson Aguilar-Palma, Francisco Castillo-Rangel, F. Sánchez-Dávila, U. Macías-Cruz
{"title":"ANALYSIS OF THE LACTATION CURVE OF MURRAH BUFFALOES WITH MIXED NON-LINEAR MODELS","authors":"C. Luna-Palomera, J. Domínguez-Viveros, Guadalupe Nelson Aguilar-Palma, Francisco Castillo-Rangel, F. Sánchez-Dávila, U. Macías-Cruz","doi":"10.29393/chjaas37-22alcu60022","DOIUrl":null,"url":null,"abstract":"This study aimed to evaluate the lactation curve of female Murrah buffaloes, using mixed nonlinear models (NLM), across three lactation periods (180 d, 210 d, and 240 d). A total of 5334 data on daily milk production (kg) were analyzed. The data were collected every seven days in the interval of one to 250 days of lactation, corresponding to 221 lactations and 145 females, with calvings from 2017 to 2019. The data came from a herd located in the Centro municipality, Tabasco, Mexico. Five NLM were evaluated: Wood (WOD), Wiltmink (WIL), Cobby (COB), Brody (BRO), Sikka (SIK). The best fit model was selected based on the mean prediction error, mean absolute percentage error (MAPE), prediction error variance, coefficient of determination (R 2 ), concordance correlation coefficient (CCC), Akaike (AIC) and Bayesian (BIC) information criteria. A regression analysis was performed between the observed and predicted values. All the NLM had a R 2 above 0.91. They tend to underestimate the predictions, without residual autocorrelation. The MAPE showed an average value of 23.5%. The best fit model was WOD, followed by SIK and BRO. For WIL and COB, the mixed model did not improve the fitting. The shortest lactation period showed the best fit, followed by the 210 d and 240 d periods. The relationship between observed:predicted values fluctuated from 0.65 to 1.00, with an average value of 0.94. The use of NLM transcended in the AIC and BIC. The evaluated models showed goodness of fit, with good predictability, but low values in accuracy and precision of prediction.","PeriodicalId":42485,"journal":{"name":"Chilean Journal of Agricultural & Animal Sciences","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chilean Journal of Agricultural & Animal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29393/chjaas37-22alcu60022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 2
Abstract
This study aimed to evaluate the lactation curve of female Murrah buffaloes, using mixed nonlinear models (NLM), across three lactation periods (180 d, 210 d, and 240 d). A total of 5334 data on daily milk production (kg) were analyzed. The data were collected every seven days in the interval of one to 250 days of lactation, corresponding to 221 lactations and 145 females, with calvings from 2017 to 2019. The data came from a herd located in the Centro municipality, Tabasco, Mexico. Five NLM were evaluated: Wood (WOD), Wiltmink (WIL), Cobby (COB), Brody (BRO), Sikka (SIK). The best fit model was selected based on the mean prediction error, mean absolute percentage error (MAPE), prediction error variance, coefficient of determination (R 2 ), concordance correlation coefficient (CCC), Akaike (AIC) and Bayesian (BIC) information criteria. A regression analysis was performed between the observed and predicted values. All the NLM had a R 2 above 0.91. They tend to underestimate the predictions, without residual autocorrelation. The MAPE showed an average value of 23.5%. The best fit model was WOD, followed by SIK and BRO. For WIL and COB, the mixed model did not improve the fitting. The shortest lactation period showed the best fit, followed by the 210 d and 240 d periods. The relationship between observed:predicted values fluctuated from 0.65 to 1.00, with an average value of 0.94. The use of NLM transcended in the AIC and BIC. The evaluated models showed goodness of fit, with good predictability, but low values in accuracy and precision of prediction.
期刊介绍:
Revista Chile de Agricultura y Ciencias Veterinarias es una revista de acceso abierto (open access), que significa que su contenido está disponible en forma gratuita para los usuarios y sus instituciones. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar, o establecer una conexión a los artículos sin necesidad de pedir autorización previa al editor o a los autores. Esto es de acuerdo con la definición de Budapest Open Access Initiative (BOAI). Los artículos se publican bajo una licencia de Creative Commons reconocimiento No Comercial 4.0 Internacional. Copyright: Se autoriza la reproducción y cita de los artículos publicados en Chilean Journal of Agricultural & Animal Sciences (ex Agro-Ciencia), siempre que se indique el nombre del autor(es), año, volumen, número y páginas. Las opiniones y afirmaciones expuestas en los trabajos representan exclusivamente los puntos de vista de los autores. La mención de productos o marcas comerciales en la revista no implica una recomendación por parte de la Universidad de Concepción.