Bronson D. Hausmann, Thomas W. Hawkins, John Ballato, Minoru Tomozawa
{"title":"Effect of draw temperature and flame polishing on birefringence of silica glass fiber","authors":"Bronson D. Hausmann, Thomas W. Hawkins, John Ballato, Minoru Tomozawa","doi":"10.1111/ijag.16623","DOIUrl":null,"url":null,"abstract":"<p>Recently developed methods for high resolution birefringence measurement have been applied to distinguish between the surface and interior birefringence of silica glass fibers as a function of drawing temperature and initial surface condition for two types of silica glass with different water contents. Fibers were drawn in a water-free argon environment using graphite heating elements. It was found that fibers drawn at lower temperatures resulted in greater, interior birefringence, in agreement with previous reports. Additionally, it was found that in the case of low-water silica glass, flame polishing via oxygen–hydrogen mixture and drawn into fibers at lower temperature resulted in significant surface compressive stress upon drawing. This compressive stress may be the result of surface stress relaxation in silica glass that occurs in the presence of water during fiber drawing. In silica glass that contains greater internal hydroxyl impurity concentrations, the interior birefringence as well as the surface stress relaxation was significantly reduced under the same fiber drawing conditions. Characterization of such stress responses provides insight into the effects of common processing techniques as well as impresses the significance of preform processing for consistent fiber production.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 3","pages":"373-379"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16623","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently developed methods for high resolution birefringence measurement have been applied to distinguish between the surface and interior birefringence of silica glass fibers as a function of drawing temperature and initial surface condition for two types of silica glass with different water contents. Fibers were drawn in a water-free argon environment using graphite heating elements. It was found that fibers drawn at lower temperatures resulted in greater, interior birefringence, in agreement with previous reports. Additionally, it was found that in the case of low-water silica glass, flame polishing via oxygen–hydrogen mixture and drawn into fibers at lower temperature resulted in significant surface compressive stress upon drawing. This compressive stress may be the result of surface stress relaxation in silica glass that occurs in the presence of water during fiber drawing. In silica glass that contains greater internal hydroxyl impurity concentrations, the interior birefringence as well as the surface stress relaxation was significantly reduced under the same fiber drawing conditions. Characterization of such stress responses provides insight into the effects of common processing techniques as well as impresses the significance of preform processing for consistent fiber production.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.