An analysis of the WTC fires using CIB correlations and simple modeling

IF 1.9 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Fire Sciences Pub Date : 2021-02-20 DOI:10.1177/0734904121989670
J. Quintiere
{"title":"An analysis of the WTC fires using CIB correlations and simple modeling","authors":"J. Quintiere","doi":"10.1177/0734904121989670","DOIUrl":null,"url":null,"abstract":"CIB correlations for compartment burning rates and average gas temperatures are examined for accuracy, utility, and generality. The results are applied to modeling the fire on 9/11 in WTC 1. Specific information is used from the NIST investigation. It is demonstrated that simple heat transfer modeling can predict the truss steel rod temperatures for the E119 tests of WTC done by NIST. The CIB temperature correlation and steel truss modeling are used to predict burning conditions for the WTC 1 96th floor fire and compared to the NIST results. Here a consideration of fuel loads from 20 to 40 kg/m2 was considered compared to just 20 used by NIST. The results suggest that the fully insulated truss bar temperatures would achieve higher values for higher fuel loads. A critical steel truss temperature of 650°C could support failure of the trusses as a theory for the collapse of the towers.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0734904121989670","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0734904121989670","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

CIB correlations for compartment burning rates and average gas temperatures are examined for accuracy, utility, and generality. The results are applied to modeling the fire on 9/11 in WTC 1. Specific information is used from the NIST investigation. It is demonstrated that simple heat transfer modeling can predict the truss steel rod temperatures for the E119 tests of WTC done by NIST. The CIB temperature correlation and steel truss modeling are used to predict burning conditions for the WTC 1 96th floor fire and compared to the NIST results. Here a consideration of fuel loads from 20 to 40 kg/m2 was considered compared to just 20 used by NIST. The results suggest that the fully insulated truss bar temperatures would achieve higher values for higher fuel loads. A critical steel truss temperature of 650°C could support failure of the trusses as a theory for the collapse of the towers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用CIB相关性和简单建模分析WTC火灾
对隔间燃烧速率和平均气体温度的CIB相关性进行了准确性、实用性和通用性检验。将计算结果应用于WTC1的9/11火灾模型。具体信息来自NIST调查。研究表明,简单的传热模型可以预测NIST进行的WTC E119试验的特拉斯钢杆温度。CIB温度相关性和特拉斯钢模型用于预测WTC 1 96层火灾的燃烧条件,并与NIST的结果进行了比较。此处考虑20至40的燃料负荷 kg/m2,而NIST仅使用20。结果表明,完全绝缘的特拉斯杆的温度在较高的燃料负荷下会达到更高的值。临界温度为650°C的特拉斯钢可以支持桁架的破坏,作为塔架倒塌的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fire Sciences
Journal of Fire Sciences 工程技术-材料科学:综合
CiteScore
4.00
自引率
0.00%
发文量
14
审稿时长
2.5 months
期刊介绍: The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Quantification of hydrogen cyanide in fire effluent Experimental study and modelling of real-scale vertical cable tray fires Quantifying disparities in fire-related mortality of US career and volunteer firefighters: A 43-year database study Synergistic effect of nano silicon and piperazine pyrophosphate/melamine polyphosphate on flame retardancy of polypropylene Modelling of the swelling behaviour of a fire retarded material under a cone calorimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1