Medicinal Chemistry of Quinazolines as Anticancer Agents Targeting Tyrosine Kinases

IF 2.3 Q3 PHARMACOLOGY & PHARMACY Scientia Pharmaceutica Pub Date : 2023-03-28 DOI:10.3390/scipharm91020018
M. Zayed
{"title":"Medicinal Chemistry of Quinazolines as Anticancer Agents Targeting Tyrosine Kinases","authors":"M. Zayed","doi":"10.3390/scipharm91020018","DOIUrl":null,"url":null,"abstract":"Cancer is a large group of diseases that can affect any organ or body tissue due to the abnormal cellular growth with the unknown reasons. Many of the existing chemotherapeutic agents are highly toxic with a low level of selectivity. Additionally, they lead to development of therapeutic resistance. Hence, the development of targeted chemotherapeutic agents with low side effects and high selectivity is required for cancer treatment. Quinazoline is a vital scaffold well-known to be linked with several biological activities. The anticancer activity is one of the prominent biological activities of this scaffold. Several established anticancer quinazolines work by different mechanisms on the various molecular targets. The aim of this review is to present different features of medicinal chemistry as drug design, structure activity relationship, and mode of action of some targeted anticancer quinazoline derivatives. It gives comprehensive attention on the chemotherapeutic activity of quinazolines in the viewpoint of drug discovery and its development. This review provides panoramic view to the medicinal chemists for supporting their efforts to design and synthesize novel quinazolines as targeted chemotherapeutic agents.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Pharmaceutica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/scipharm91020018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 3

Abstract

Cancer is a large group of diseases that can affect any organ or body tissue due to the abnormal cellular growth with the unknown reasons. Many of the existing chemotherapeutic agents are highly toxic with a low level of selectivity. Additionally, they lead to development of therapeutic resistance. Hence, the development of targeted chemotherapeutic agents with low side effects and high selectivity is required for cancer treatment. Quinazoline is a vital scaffold well-known to be linked with several biological activities. The anticancer activity is one of the prominent biological activities of this scaffold. Several established anticancer quinazolines work by different mechanisms on the various molecular targets. The aim of this review is to present different features of medicinal chemistry as drug design, structure activity relationship, and mode of action of some targeted anticancer quinazoline derivatives. It gives comprehensive attention on the chemotherapeutic activity of quinazolines in the viewpoint of drug discovery and its development. This review provides panoramic view to the medicinal chemists for supporting their efforts to design and synthesize novel quinazolines as targeted chemotherapeutic agents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
靶向酪氨酸激酶的喹唑啉类抗癌药物的药物化学研究
癌症是由于细胞生长异常,原因不明,可影响任何器官或身体组织的一大类疾病。现有的许多化疗药物毒性大,选择性低。此外,它们还会导致治疗耐药性的产生。因此,开发低副作用、高选择性的靶向化疗药物是癌症治疗的需要。喹唑啉是一种重要的支架,已知与几种生物活性有关。抗癌活性是该支架突出的生物活性之一。几种已建立的抗癌喹唑啉通过不同的机制作用于不同的分子靶点。本文综述了一些靶向抗癌喹唑啉衍生物在药物化学方面的不同特点,如药物设计、结构活性关系和作用方式。本文从药物发现和开发的角度全面介绍了喹唑啉类药物的化疗活性。本文综述为药物化学家设计和合成新型喹唑啉类靶向化疗药物提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientia Pharmaceutica
Scientia Pharmaceutica Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.60
自引率
4.00%
发文量
67
审稿时长
10 weeks
期刊最新文献
The Extraction of Bioactive Agents from Calophyllum inophyllum L., and Their Pharmacological Properties The Risks of “Getting High” on Over-the-Counter Drugs during Pregnancy Diastereomers of Spheroidal Form and Commercially Available Taxifolin Samples Inhibitory Effect of Mistletoe Ointment on DNCB-Induced Atopic Dermatitis in BALB/c Mice Assessing the Influence of a Rotating Magnetic Field on Ibuprofen Permeability from Diverse Pharmaceutical Formulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1