Valorization of the inedible pistachio shells into nanoscale transition metal and nitrogen codoped carbon-based electrocatalysts for hydrogen evolution reaction and oxygen reduction reaction

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials for Renewable and Sustainable Energy Pub Date : 2022-07-13 DOI:10.1007/s40243-022-00212-5
Mohsin Muhyuddin, Nicolo’ Zocche, Roberto Lorenzi, Chiara Ferrara, Federico Poli, Francesca Soavi, Carlo Santoro
{"title":"Valorization of the inedible pistachio shells into nanoscale transition metal and nitrogen codoped carbon-based electrocatalysts for hydrogen evolution reaction and oxygen reduction reaction","authors":"Mohsin Muhyuddin,&nbsp;Nicolo’ Zocche,&nbsp;Roberto Lorenzi,&nbsp;Chiara Ferrara,&nbsp;Federico Poli,&nbsp;Francesca Soavi,&nbsp;Carlo Santoro","doi":"10.1007/s40243-022-00212-5","DOIUrl":null,"url":null,"abstract":"<div><p>Making a consistency with the objectives of circular economy, herein, waste pistachios shells were utilized for the development of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) electrocatalysts which are the key bottleneck in the technological evolution of electrolyzers and fuel cells, respectively. As an alternative to scarce and expensive platinum-group-metal (PGM) electrocatalysts, metal nitrogen carbons (MNCs) are emerging as a promising candidate for both aforementioned electrocatalysis where iron and nickel are the metal of choice for ORR and HER, respectively. Therefore, FeNCs and NiNCs were fabricated utilizing inedible pistachio shells as a low-cost biosource of carbon. The steps involved in the fabrication of electrocatalyst were correlated with electrochemical performance in alkaline media. Encouraging onset potential of ~ 0.88 V vs RHE with a possibility of a 2 + 2 reaction pathway was observed in pyrolyzed and ball-milled FeNC. However, HF etching for template removal slightly affected the kinetics and eventually resulted in a relatively higher yield of peroxide. In parallel, the pyrolyzed NiNC demonstrated a lower HER overpotential of ~ 0.4 V vs RHE at − 10 mA cm<sup>−2</sup>. Nevertheless, acid washing adversely affected the HER performance and consequently, very high overpotential was witnessed.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"11 2","pages":"131 - 141"},"PeriodicalIF":3.6000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-022-00212-5.pdf","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-022-00212-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

Abstract

Making a consistency with the objectives of circular economy, herein, waste pistachios shells were utilized for the development of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) electrocatalysts which are the key bottleneck in the technological evolution of electrolyzers and fuel cells, respectively. As an alternative to scarce and expensive platinum-group-metal (PGM) electrocatalysts, metal nitrogen carbons (MNCs) are emerging as a promising candidate for both aforementioned electrocatalysis where iron and nickel are the metal of choice for ORR and HER, respectively. Therefore, FeNCs and NiNCs were fabricated utilizing inedible pistachio shells as a low-cost biosource of carbon. The steps involved in the fabrication of electrocatalyst were correlated with electrochemical performance in alkaline media. Encouraging onset potential of ~ 0.88 V vs RHE with a possibility of a 2 + 2 reaction pathway was observed in pyrolyzed and ball-milled FeNC. However, HF etching for template removal slightly affected the kinetics and eventually resulted in a relatively higher yield of peroxide. In parallel, the pyrolyzed NiNC demonstrated a lower HER overpotential of ~ 0.4 V vs RHE at − 10 mA cm−2. Nevertheless, acid washing adversely affected the HER performance and consequently, very high overpotential was witnessed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不可食用开心果壳制备纳米过渡金属和氮共掺杂碳基析氢和氧还原电催化剂的研究
根据循环经济的目标,利用废弃开心果壳分别开发析氢反应(HER)电催化剂和氧还原反应(ORR)电催化剂,这是电解槽和燃料电池技术发展的关键瓶颈。作为稀有和昂贵的铂族金属(PGM)电催化剂的替代品,金属氮碳(MNCs)正在成为上述电催化的有希望的候选者,其中铁和镍分别是ORR和HER的选择金属。因此,利用不可食用的开心果壳作为低成本的生物碳源制备了FeNCs和NiNCs。电催化剂的制备步骤与在碱性介质中的电化学性能有关。在热解和球磨的FeNC中观察到~ 0.88 V vs RHE的激发电位,并可能出现2 + 2反应途径。然而,用于模板去除的HF蚀刻对动力学稍有影响,并最终导致相对较高的过氧化物收率。同时,热解后的NiNC在−10 mA cm−2下的HER过电位比RHE低~ 0.4 V。然而,酸洗对HER性能有不利影响,因此出现了非常高的过电位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
期刊最新文献
Novel hole transport materials of pyrogallol-sulfonamide hybrid: synthesis, optical, electrochemical properties and molecular modelling for perovskite solar cells Investigation of semiconductor to metallic transitions of perovskite CsGeCl3 material through induced pressure: a DFT calculation for photovoltaic and optoelectronic applications Mg(BH4)2-CH3NH2BH3@MgO solid state electrolyte for magnesium batteries Biodiesel synthesis from low cost biomass wastes and its cost assessment inducing process optimization Sustainable construction: the use of cork material in the building industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1