Xiaowang Pan, Jie Song, Wenzhong Qu, Lianghao Zou, S. Liang
{"title":"An improved derivation and comprehensive understanding of the equivalent static wind loads of high‐rise buildings with structural eccentricities","authors":"Xiaowang Pan, Jie Song, Wenzhong Qu, Lianghao Zou, S. Liang","doi":"10.1002/tal.1976","DOIUrl":null,"url":null,"abstract":"The trend of constructing high‐rise buildings with irregular structural configurations results in buildings with complicated external wind loads and eccentricities between the mass and stiffness centers, which complicate the assessment of buildings' 3D equivalent static wind load (ESWL). This paper develops an improved method to determine the 3D ESWLs for high‐rise buildings with structural eccentricities. First, the derivation process of each floor's 3D internal force‐based ESWLs, including the mean, background, and resonant components, is described in detail. Then, three typical high‐rise buildings, each with 15 eccentricity cases, are used to demonstrate the proposed method's advantage in the wind resistance design of high‐rise buildings with structural eccentricities, especially in providing reliable along‐height distribution of ESWLs. Finally, systematic analyses are conducted to examine the effects of load‐correlation, structural eccentricity ratio, and building side ratio on the derived 3D ESWLs. The results show that the proposed method provides a reliable along‐height distribution, which helps give an adequate understanding of the ESWLs of high‐rise buildings with structural eccentricities. Some concluding remarks are extracted from the results to show how the load‐correlation, structural eccentricity ratio, and building side ratio affect the ESWLs of high‐rise buildings. The conclusions are valuable references for the wind‐resistant design of high‐rise buildings with structural eccentricities.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.1976","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The trend of constructing high‐rise buildings with irregular structural configurations results in buildings with complicated external wind loads and eccentricities between the mass and stiffness centers, which complicate the assessment of buildings' 3D equivalent static wind load (ESWL). This paper develops an improved method to determine the 3D ESWLs for high‐rise buildings with structural eccentricities. First, the derivation process of each floor's 3D internal force‐based ESWLs, including the mean, background, and resonant components, is described in detail. Then, three typical high‐rise buildings, each with 15 eccentricity cases, are used to demonstrate the proposed method's advantage in the wind resistance design of high‐rise buildings with structural eccentricities, especially in providing reliable along‐height distribution of ESWLs. Finally, systematic analyses are conducted to examine the effects of load‐correlation, structural eccentricity ratio, and building side ratio on the derived 3D ESWLs. The results show that the proposed method provides a reliable along‐height distribution, which helps give an adequate understanding of the ESWLs of high‐rise buildings with structural eccentricities. Some concluding remarks are extracted from the results to show how the load‐correlation, structural eccentricity ratio, and building side ratio affect the ESWLs of high‐rise buildings. The conclusions are valuable references for the wind‐resistant design of high‐rise buildings with structural eccentricities.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.