{"title":"Predicting 3-DoF motions of a moored barge by machine learning","authors":"Yu Yang , Tao Peng , Shijun Liao","doi":"10.1016/j.joes.2022.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>The real-time prediction of a floating platform or a vessel is essential for motion-sensitive maritime activities. It can enhance the performance of motion compensation system and provide useful early-warning information. In this paper, we apply a machine learning technique to predict the surge, heave, and pitch motions of a moored rectangular barge excited by an irregular wave, which is purely based on the motion data. The dataset came from a model test performed in the deep-water ocean basin, at Shanghai Jiao Tong University, China. Using the trained machine learning model, the predictions of 3-DoF (degrees of freedom) motions can extend two to four wave cycles into the future with good accuracy. It shows great potential for applying the machine learning technique to forecast the motions of offshore platforms or vessels.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 4","pages":"Pages 336-343"},"PeriodicalIF":13.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468013322002339","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 2
Abstract
The real-time prediction of a floating platform or a vessel is essential for motion-sensitive maritime activities. It can enhance the performance of motion compensation system and provide useful early-warning information. In this paper, we apply a machine learning technique to predict the surge, heave, and pitch motions of a moored rectangular barge excited by an irregular wave, which is purely based on the motion data. The dataset came from a model test performed in the deep-water ocean basin, at Shanghai Jiao Tong University, China. Using the trained machine learning model, the predictions of 3-DoF (degrees of freedom) motions can extend two to four wave cycles into the future with good accuracy. It shows great potential for applying the machine learning technique to forecast the motions of offshore platforms or vessels.
期刊介绍:
The Journal of Ocean Engineering and Science (JOES) serves as a platform for disseminating original research and advancements in the realm of ocean engineering and science.
JOES encourages the submission of papers covering various aspects of ocean engineering and science.