VSSB-Raft:A Secure and Efficient Zero Trust Consensus Algorithm for Blockchain

IF 3.9 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Sensor Networks Pub Date : 2023-08-08 DOI:10.1145/3611308
Siben Tian, Fenhua Bai, Tao Shen, Chi Zhang, Gong Bei
{"title":"VSSB-Raft:A Secure and Efficient Zero Trust Consensus Algorithm for Blockchain","authors":"Siben Tian, Fenhua Bai, Tao Shen, Chi Zhang, Gong Bei","doi":"10.1145/3611308","DOIUrl":null,"url":null,"abstract":"To solve the problems of vote forgery and malicious election of candidate nodes in the Raft consensus algorithm, we combine zero trust with the Raft consensus algorithm and propose a secure and efficient consensus algorithm -Verifiable Secret Sharing Byzantine Fault Tolerance Raft Consensus Algorithm(VSSB-Raft). The VSSB-Raft consensus algorithm realizes zero trust through the supervisor node and secret sharing algorithm without the invisible trust between nodes required by the algorithm. Meanwhile, the VSSB-Raft consensus algorithm uses the SM2 signature algorithm to realize the characteristics of zero trust requiring authentication before data use. In addition, by introducing the NDN network, we redesign the communication between nodes and guarantee the communication quality among nodes. The VSSB-Raft consensus algorithm proposed in this paper can make the algorithm Byzantine fault tolerant by setting a threshold for secret sharing while maintaining the algorithm’s complexity to be O(n). Experiments show that the VSSB-Raft consensus algorithm is secure and efficient with high throughput and low consensus latency.","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3611308","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the problems of vote forgery and malicious election of candidate nodes in the Raft consensus algorithm, we combine zero trust with the Raft consensus algorithm and propose a secure and efficient consensus algorithm -Verifiable Secret Sharing Byzantine Fault Tolerance Raft Consensus Algorithm(VSSB-Raft). The VSSB-Raft consensus algorithm realizes zero trust through the supervisor node and secret sharing algorithm without the invisible trust between nodes required by the algorithm. Meanwhile, the VSSB-Raft consensus algorithm uses the SM2 signature algorithm to realize the characteristics of zero trust requiring authentication before data use. In addition, by introducing the NDN network, we redesign the communication between nodes and guarantee the communication quality among nodes. The VSSB-Raft consensus algorithm proposed in this paper can make the algorithm Byzantine fault tolerant by setting a threshold for secret sharing while maintaining the algorithm’s complexity to be O(n). Experiments show that the VSSB-Raft consensus algorithm is secure and efficient with high throughput and low consensus latency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VSSB-Raft:一种安全高效的区块链零信任共识算法
为了解决Raft共识算法中存在的投票伪造和候选节点恶意选举问题,我们将零信任与Raft共识算法相结合,提出了一种安全高效的共识算法——可验证秘密共享拜占庭容错Raft共识算法(VSSB-Raft)。VSSB-Raft共识算法通过监督节点和秘密共享算法实现零信任,不需要算法所要求的节点间隐形信任。同时,VSSB-Raft共识算法采用SM2签名算法,实现了数据使用前需要认证的零信任特性。此外,通过引入NDN网络,重新设计节点间通信,保证节点间通信质量。本文提出的VSSB-Raft共识算法在保持算法复杂度为O(n)的前提下,通过设置秘密共享阈值使算法具有拜占庭容错性。实验表明,VSSB-Raft共识算法具有高吞吐量和低共识延迟的安全高效特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Sensor Networks
ACM Transactions on Sensor Networks 工程技术-电信学
CiteScore
5.90
自引率
7.30%
发文量
131
审稿时长
6 months
期刊介绍: ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.
期刊最新文献
Fair and Robust Federated Learning via Decentralized and Adaptive Aggregation based on Blockchain PnA: Robust Aggregation Against Poisoning Attacks to Federated Learning for Edge Intelligence HCCNet: Hybrid Coupled Cooperative Network for Robust Indoor Localization HDM-GNN: A Heterogeneous Dynamic Multi-view Graph Neural Network for Crime Prediction A DRL-based Partial Charging Algorithm for Wireless Rechargeable Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1