Effects of Moderate to High Static Magnetic Fields on Reproduction

IF 1.2 3区 生物学 Q3 BIOLOGY Bioelectromagnetics Pub Date : 2022-04-29 DOI:10.1002/bem.22404
Chao Song, Biao Yu, Junjun Wang, Yiming Zhu, Xin Zhang
{"title":"Effects of Moderate to High Static Magnetic Fields on Reproduction","authors":"Chao Song,&nbsp;Biao Yu,&nbsp;Junjun Wang,&nbsp;Yiming Zhu,&nbsp;Xin Zhang","doi":"10.1002/bem.22404","DOIUrl":null,"url":null,"abstract":"<p>With the wide application of magnetic resonance imaging in hospitals and permanent magnets in household items, people have increased exposure to various types of static magnetic fields (SMFs) with moderate and high intensities, which has caused a considerable amount of public concern. Studies have shown that some aspects of gametogenesis and early embryonic development can be significantly affected by SMFs, while others have shown no effects. This review summarizes the experimental results of moderate to high-intensity SMFs (1 mT–16.7 T) on the reproductive development of different model animals, and we find that the effects of SMFs are variable depending on experimental conditions. In general, the effects of inhomogeneous SMFs seem to be more significant compared to that of homogeneous SMFs, which is likely due to magnetic forces generated by the magnetic field gradient. Moreover, some electromagnetic fields may have induced bioeffects because of nonnegligible gradient and heat effect, which are much reduced in superconducting magnets. We hope this review can provide a starting point for more in-depth analysis of various SMFs on reproduction, which is indispensable for evaluating the safety and potential applications of SMFs on living organisms in the future. © 2022 Bioelectromagnetics Society.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"43 4","pages":"278-291"},"PeriodicalIF":1.2000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.22404","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

With the wide application of magnetic resonance imaging in hospitals and permanent magnets in household items, people have increased exposure to various types of static magnetic fields (SMFs) with moderate and high intensities, which has caused a considerable amount of public concern. Studies have shown that some aspects of gametogenesis and early embryonic development can be significantly affected by SMFs, while others have shown no effects. This review summarizes the experimental results of moderate to high-intensity SMFs (1 mT–16.7 T) on the reproductive development of different model animals, and we find that the effects of SMFs are variable depending on experimental conditions. In general, the effects of inhomogeneous SMFs seem to be more significant compared to that of homogeneous SMFs, which is likely due to magnetic forces generated by the magnetic field gradient. Moreover, some electromagnetic fields may have induced bioeffects because of nonnegligible gradient and heat effect, which are much reduced in superconducting magnets. We hope this review can provide a starting point for more in-depth analysis of various SMFs on reproduction, which is indispensable for evaluating the safety and potential applications of SMFs on living organisms in the future. © 2022 Bioelectromagnetics Society.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中强静磁场对生殖的影响
随着磁共振成像在医院和永磁体在家居用品中的广泛应用,人们越来越多地暴露于各种中强度和高强度的静磁场中,引起了公众的广泛关注。研究表明,SMFs可以显著影响配子体发生和早期胚胎发育的某些方面,而其他方面则没有影响。本文综述了中高强度SMFs (1 mT-16.7 T)对不同模型动物生殖发育的实验结果,发现SMFs对不同实验条件的影响是不同的。总的来说,非均匀SMFs的影响似乎比均匀SMFs更显著,这可能是由于磁场梯度产生的磁力。此外,某些电磁场会由于不可忽略的梯度和热效应而产生生物效应,而这些效应在超导磁体中大大减小。我们希望这一综述能够为更深入地分析各种SMFs对生殖的影响提供一个起点,这对于今后评价SMFs对生物体的安全性和潜在应用是必不可少的。©2022生物电磁学学会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioelectromagnetics
Bioelectromagnetics 生物-生物物理
CiteScore
4.60
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.
期刊最新文献
Modulation of Bone Metabolic Balance by Electromagnetic Fields as a Novel Strategy for Osteoporosis Treatment Conceptualization and Realization of a Vibrating Intrinsic Reverberation Chamber for Plant Exposure to Radio Frequency Electromagnetic Fields. Towards a Planetary Health Impact Assessment Framework: Exploring Expert Knowledge and Artificial Intelligence for a RF-EMF Exposure Case-Study. Different Orientations Moderate Static Magnetic Fields Prevent Bone Loss and Improve the Mechanical Properties in Ovariectomized Mice. Advances in Female Chest Modeling: Enhanced 3D Dosimetric Models Across Two Illustrative Scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1