{"title":"Bootstrapping through discrete convolutional methods","authors":"Jared M. Clark, Richard L. Warr","doi":"10.1002/asmb.2809","DOIUrl":null,"url":null,"abstract":"<p>Bootstrapping was designed to randomly resample data from a fixed sample using Monte Carlo techniques. However, the original sample itself defines a discrete distribution. Convolutional methods are well suited for discrete distributions, and we show the advantages of utilizing these techniques for bootstrapping. The discrete convolutional approach can provide exact numerical solutions for bootstrap quantities, or at least mathematical error bounds. In contrast, Monte Carlo bootstrap methods can only provide confidence intervals which converge slowly. Additionally, for some problems the computation time of the convolutional approach can be dramatically less than that of Monte Carlo resampling. This article provides several examples of bootstrapping using the proposed convolutional technique and compares the results to those of the Monte Carlo bootstrap, and to those of the competing saddlepoint method.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2809","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Bootstrapping was designed to randomly resample data from a fixed sample using Monte Carlo techniques. However, the original sample itself defines a discrete distribution. Convolutional methods are well suited for discrete distributions, and we show the advantages of utilizing these techniques for bootstrapping. The discrete convolutional approach can provide exact numerical solutions for bootstrap quantities, or at least mathematical error bounds. In contrast, Monte Carlo bootstrap methods can only provide confidence intervals which converge slowly. Additionally, for some problems the computation time of the convolutional approach can be dramatically less than that of Monte Carlo resampling. This article provides several examples of bootstrapping using the proposed convolutional technique and compares the results to those of the Monte Carlo bootstrap, and to those of the competing saddlepoint method.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.