Applying deep learning to predict innovations in small and medium enterprises (SMEs): the dark side of knowledge management risk

IF 2.7 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE VINE Journal of Information and Knowledge Management Systems Pub Date : 2023-03-28 DOI:10.1108/vjikms-09-2022-0294
Ronnié Figueiredo, João J. M. Ferreira, M. Emilia, O. Dorokhov
{"title":"Applying deep learning to predict innovations in small and medium enterprises (SMEs): the dark side of knowledge management risk","authors":"Ronnié Figueiredo, João J. M. Ferreira, M. Emilia, O. Dorokhov","doi":"10.1108/vjikms-09-2022-0294","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study aims to predict the dark side of knowledge management risk to innovation in Portuguese small and medium enterprises (SMEs). It examines the spinner innovation model factors of knowledge creation, knowledge transfer, private knowledge, public knowledge and innovation in uncertain environments.\n\n\nDesign/methodology/approach\nThe authors developed a conceptual model to support the analysis. The survey data stemmed from a sample of 208 Portuguese SMEs in Portugal. The authors analyzed the primary data from the ad hoc survey using the data mining (deep learning) technique.\n\n\nFindings\nThe research sets out and tests factors relevant to understanding how to predict innovation in uncertain business environments. This study identifies four factors fostering innovation in SMEs: knowledge creation, knowledge transfer, public knowledge management and private knowledge management. Knowledge creation showed the best return and presented the closest relationship with innovation.\n\n\nOriginality/value\nInnovation models generally measure the relationships between variables and their impacts on the economy (economic and regional development). Predictive models are considered in the literature as a gap to be filled, especially in an uncertain environment in the SME context.\n","PeriodicalId":45590,"journal":{"name":"VINE Journal of Information and Knowledge Management Systems","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VINE Journal of Information and Knowledge Management Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/vjikms-09-2022-0294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Purpose This study aims to predict the dark side of knowledge management risk to innovation in Portuguese small and medium enterprises (SMEs). It examines the spinner innovation model factors of knowledge creation, knowledge transfer, private knowledge, public knowledge and innovation in uncertain environments. Design/methodology/approach The authors developed a conceptual model to support the analysis. The survey data stemmed from a sample of 208 Portuguese SMEs in Portugal. The authors analyzed the primary data from the ad hoc survey using the data mining (deep learning) technique. Findings The research sets out and tests factors relevant to understanding how to predict innovation in uncertain business environments. This study identifies four factors fostering innovation in SMEs: knowledge creation, knowledge transfer, public knowledge management and private knowledge management. Knowledge creation showed the best return and presented the closest relationship with innovation. Originality/value Innovation models generally measure the relationships between variables and their impacts on the economy (economic and regional development). Predictive models are considered in the literature as a gap to be filled, especially in an uncertain environment in the SME context.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用深度学习预测中小企业创新:知识管理风险的黑暗面
目的本研究旨在预测知识管理风险对葡萄牙中小企业创新的阴暗面。研究了不确定环境下的知识创造、知识转移、私有知识、公共知识和创新的旋转创新模型因素。设计/方法/方法作者开发了一个概念模型来支持分析。该调查数据来自对葡萄牙境内的208家葡萄牙中小企业的抽样调查。作者使用数据挖掘(深度学习)技术分析了来自临时调查的原始数据。研究结果该研究列出并测试了与理解如何在不确定的商业环境中预测创新相关的因素。本研究确定了促进中小企业创新的四个因素:知识创造、知识转移、公共知识管理和私人知识管理。知识创造的回报最好,与创新的关系最为密切。原创性/价值创新模型通常衡量变量之间的关系及其对经济(经济和区域发展)的影响。在文献中,预测模型被认为是一个有待填补的空白,特别是在中小企业背景下的不确定环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
VINE Journal of Information and Knowledge Management Systems
VINE Journal of Information and Knowledge Management Systems INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
6.40
自引率
21.40%
发文量
68
期刊介绍: Information not localized
期刊最新文献
Does ethical climate of the organization foster entrepreneurial marketing? The role of work engagement and effective knowledge transfer Knowledge capitalization and perceived fairness of reward in real estate sector: mediating role of shared leadership Role of artificial intelligence (AI) in poverty alleviation: a bibliometric analysis Adopting knowledge-sharing-driven blockchain technology in healthcare: a developing country’s perspective Knowledge sharing in open-source software development communities: a review and synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1