Developing a new model for predicting the diameter distribution of oak forests using an artificial neural network

IF 1.7 3区 农林科学 Q2 FORESTRY Annals of Forest Research Pub Date : 2022-02-07 DOI:10.15287/afr.2021.2060
Shisheng Long, Siqi Zeng, Guangxing Wang
{"title":"Developing a new model for predicting the diameter distribution of oak forests using an artificial neural network","authors":"Shisheng Long, Siqi Zeng, Guangxing Wang","doi":"10.15287/afr.2021.2060","DOIUrl":null,"url":null,"abstract":"The parameters of the probability density function (PDF) may be estimated using the parameter prediction method (PPM) and the parameter recovery method (PRM). However, these methods can suffer from accuracy issues. We developed and evaluated the prediction accuracy of two PPMs (stepwise regression model and dummy variable model) and an artificial neural network (ANN) to predict diameter distribution using data collected from 188 oak forest plots. The results demonstrated that the Weibull distribution performed well in fitting the diameter distribution. Compared with the stepwise regression model, the PPM model with stand type as a dummy variable reduced the predictional errors in estimating the parameters b and c of the Weibull distribution, but the prediction accuracy of the diameter distribution showed no significant improvement. Compared with the two PPM models, the ANN model with diameter class (C), average diameter (D) and stand type (T) as input variables decreased the RRMSE by 2.9% and 4.33% in estimating diameter distribution, respectively. The satisfactory prediction accuracy and simple model structure indicated that an ANN worked well for the prediction of the diameter distribution with few requirements and high practicality.","PeriodicalId":48954,"journal":{"name":"Annals of Forest Research","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15287/afr.2021.2060","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 2

Abstract

The parameters of the probability density function (PDF) may be estimated using the parameter prediction method (PPM) and the parameter recovery method (PRM). However, these methods can suffer from accuracy issues. We developed and evaluated the prediction accuracy of two PPMs (stepwise regression model and dummy variable model) and an artificial neural network (ANN) to predict diameter distribution using data collected from 188 oak forest plots. The results demonstrated that the Weibull distribution performed well in fitting the diameter distribution. Compared with the stepwise regression model, the PPM model with stand type as a dummy variable reduced the predictional errors in estimating the parameters b and c of the Weibull distribution, but the prediction accuracy of the diameter distribution showed no significant improvement. Compared with the two PPM models, the ANN model with diameter class (C), average diameter (D) and stand type (T) as input variables decreased the RRMSE by 2.9% and 4.33% in estimating diameter distribution, respectively. The satisfactory prediction accuracy and simple model structure indicated that an ANN worked well for the prediction of the diameter distribution with few requirements and high practicality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建立了一种利用人工神经网络预测栎林直径分布的新模型
概率密度函数(PDF)的参数可以用参数预测法(PPM)和参数恢复法(PRM)估计。然而,这些方法可能存在准确性问题。利用188个栎林样地的数据,建立了逐步回归模型(PPMs)和虚拟变量模型(dummy variable model)以及人工神经网络(ANN)预测直径分布的方法,并对其预测精度进行了评价。结果表明,威布尔分布能很好地拟合直径分布。与逐步回归模型相比,以林分类型为虚拟变量的PPM模型对威布尔分布参数b和c的预测误差减小,但对直径分布的预测精度没有显著提高。与两种PPM模型相比,以直径等级(C)、平均直径(D)和林分类型(T)为输入变量的人工神经网络模型在估计直径分布方面的RRMSE分别降低了2.9%和4.33%。预测精度高,模型结构简单,表明人工神经网络对直径分布的预测要求低,实用性强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
11.10%
发文量
11
审稿时长
12 weeks
期刊介绍: Annals of Forest Research is a semestrial open access journal, which publishes research articles, research notes and critical review papers, exclusively in English, on topics dealing with forestry and environmental sciences. The journal promotes high scientific level articles, by following international editorial conventions and by applying a peer-review selection process.
期刊最新文献
Factors affecting adoption of forestry social services: evidence from major forestry provinces in China Thinning promotes litter decomposition and nutrient release in poplar plantations via altering the microclimate and understory plant diversity A review of Botryosphaeriales in Venezuela with special reference to woody plants Detection of invasive plants using NAIP imagery and airborne LiDAR in coastal Alabama and Mississippi, USA Multi-temporal Pacific madrone leaf blight assessment with unoccupied aircraft systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1