A Novel Method for Field Analysis and Design of Electromagnet Used in Lifting Applications

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Advanced Electromagnetics Pub Date : 2019-09-06 DOI:10.7716/aem.v8i4.1109
A. Hashemi, P. Gharaei
{"title":"A Novel Method for Field Analysis and Design of Electromagnet Used in Lifting Applications","authors":"A. Hashemi, P. Gharaei","doi":"10.7716/aem.v8i4.1109","DOIUrl":null,"url":null,"abstract":"Magnetic crane is one of the industrial applications of magnetic absorption, which uses an electromagnet to create the necessary force for lifting and moving objects. In this paper, the field analysis and design of an electromagnet are discussed. During the electromagnet analysis and design process, with special attention to leakage fluxes and fringing effects, a new magnetic equivalent circuit for an electromagnet is proposed. Also, the nonlinear behavior of the B-H curve of the ferromagnetic core and its saturation point are considered. Due to the various shapes of the ferromagnetic core, the U_I structure is selected with a symmetrical winding to reduce leakage flux and fringing effects. MATLAB software is used for analyzing and designing the electromagnet, and ANSYS Maxwell software is used to simulate its magnetic field. To verify the accuracy of the proposed method, the prototype was made of a magnetic crane with designed electromagnet. The comparison between measurement and simulation results shows that the error is less than 2%, which confirms the accuracy of the proposed method.","PeriodicalId":44653,"journal":{"name":"Advanced Electromagnetics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7716/aem.v8i4.1109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

Abstract

Magnetic crane is one of the industrial applications of magnetic absorption, which uses an electromagnet to create the necessary force for lifting and moving objects. In this paper, the field analysis and design of an electromagnet are discussed. During the electromagnet analysis and design process, with special attention to leakage fluxes and fringing effects, a new magnetic equivalent circuit for an electromagnet is proposed. Also, the nonlinear behavior of the B-H curve of the ferromagnetic core and its saturation point are considered. Due to the various shapes of the ferromagnetic core, the U_I structure is selected with a symmetrical winding to reduce leakage flux and fringing effects. MATLAB software is used for analyzing and designing the electromagnet, and ANSYS Maxwell software is used to simulate its magnetic field. To verify the accuracy of the proposed method, the prototype was made of a magnetic crane with designed electromagnet. The comparison between measurement and simulation results shows that the error is less than 2%, which confirms the accuracy of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
起重用电磁铁磁场分析与设计的新方法
磁力起重机是磁吸收的工业应用之一,它使用电磁铁来产生起吊和移动物体所需的力。本文讨论了一种电磁铁的场分析和设计。在电磁铁的分析和设计过程中,特别注意漏磁通和边缘效应,提出了一种新的电磁铁磁等效电路。此外,还考虑了铁磁芯B-H曲线的非线性行为及其饱和点。由于铁磁芯的形状多种多样,U_I结构选择对称绕组,以减少漏磁通和边缘效应。利用MATLAB软件对电磁铁进行了分析和设计,并利用ANSYS Maxwell软件对电磁铁的磁场进行了仿真。为了验证所提出方法的准确性,用设计好的电磁铁制作了磁力起重机的原型。测量结果与仿真结果的比较表明,误差小于2%,验证了该方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electromagnetics
Advanced Electromagnetics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.40
自引率
12.50%
发文量
33
审稿时长
10 weeks
期刊介绍: Advanced Electromagnetics, is electronic peer-reviewed open access journal that publishes original research articles as well as review articles in all areas of electromagnetic science and engineering. The aim of the journal is to become a premier open access source of high quality research that spans the entire broad field of electromagnetics from classic to quantum electrodynamics.
期刊最新文献
A Compact 16-Port Fractal Shaped Slot Antenna Array for 5G Smart Phone Communications Dual-Band Metamaterial Microwave Absorber using Ring and Circular Patch with Slits Thinned Smart Antenna of a Semi-circular Dipole Array for Massive MIMO Systems Design of a Compact Microstrip Filtenna for Miniaturized Devices to Access Internet of Things Using Long Term Evolution A Multi-Mode Pattern Diverse Microstrip Patch Antenna Having a Constant Gain in the Elevation Plane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1