R. Nussinov, Hyunbum Jang, G. Nir, Chung-Jung Tsai, F. Cheng
{"title":"Open Structural Data in Precision Medicine.","authors":"R. Nussinov, Hyunbum Jang, G. Nir, Chung-Jung Tsai, F. Cheng","doi":"10.1146/annurev-biodatasci-122220-012951","DOIUrl":null,"url":null,"abstract":"Three-dimensional protein structural data at the molecular level are pivotal for successful precision medicine. Such data are crucial not only for discovering drugs that act to block the active site of the target mutant protein but also for clarifying to the patient and the clinician how the mutations harbored by the patient work. The relative paucity of structural data reflects their cost, challenges in their interpretation, and lack of clinical guidelines for their utilization. Rapid technological advancements in experimental high-resolution structural determination increasingly generate structures. Computationally, modeling algorithms, including molecular dynamics simulations, are becoming more powerful, as are compute-intensive hardware, particularly graphics processing units, overlapping with the inception of the exascale era. Accessible, freely available, and detailed structural and dynamical data can be merged with big data to powerfully transform personalized pharmacology. Here we review protein and emerging genome high-resolution data, along with means, applications, and examples underscoring their usefulness in precision medicine. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-122220-012951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 7
Abstract
Three-dimensional protein structural data at the molecular level are pivotal for successful precision medicine. Such data are crucial not only for discovering drugs that act to block the active site of the target mutant protein but also for clarifying to the patient and the clinician how the mutations harbored by the patient work. The relative paucity of structural data reflects their cost, challenges in their interpretation, and lack of clinical guidelines for their utilization. Rapid technological advancements in experimental high-resolution structural determination increasingly generate structures. Computationally, modeling algorithms, including molecular dynamics simulations, are becoming more powerful, as are compute-intensive hardware, particularly graphics processing units, overlapping with the inception of the exascale era. Accessible, freely available, and detailed structural and dynamical data can be merged with big data to powerfully transform personalized pharmacology. Here we review protein and emerging genome high-resolution data, along with means, applications, and examples underscoring their usefulness in precision medicine. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.