Massively Parallel Computation via Remote Memory Access

Pub Date : 2021-09-20 DOI:10.1145/3470631
Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, V. Mirrokni, W. Schudy
{"title":"Massively Parallel Computation via Remote Memory Access","authors":"Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, V. Mirrokni, W. Schudy","doi":"10.1145/3470631","DOIUrl":null,"url":null,"abstract":"We introduce the Adaptive Massively Parallel Computation (AMPC) model, which is an extension of the Massively Parallel Computation (MPC) model. At a high level, the AMPC model strengthens the MPC model by storing all messages sent within a round in a distributed data store. In the following round, all machines are provided with random read access to the data store, subject to the same constraints on the total amount of communication as in the MPC model. Our model is inspired by the previous empirical studies of distributed graph algorithms [8, 30] using MapReduce and a distributed hash table service [17]. This extension allows us to give new graph algorithms with much lower round complexities compared to the best-known solutions in the MPC model. In particular, in the AMPC model we show how to solve maximal independent set in O(1) rounds and connectivity/minimum spanning tree in O(log logm/n n rounds both using O(nδ) space per machine for constant δ < 1. In the same memory regime for MPC, the best-known algorithms for these problems require poly log n rounds. Our results imply that the 2-CYCLE conjecture, which is widely believed to hold in the MPC model, does not hold in the AMPC model.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We introduce the Adaptive Massively Parallel Computation (AMPC) model, which is an extension of the Massively Parallel Computation (MPC) model. At a high level, the AMPC model strengthens the MPC model by storing all messages sent within a round in a distributed data store. In the following round, all machines are provided with random read access to the data store, subject to the same constraints on the total amount of communication as in the MPC model. Our model is inspired by the previous empirical studies of distributed graph algorithms [8, 30] using MapReduce and a distributed hash table service [17]. This extension allows us to give new graph algorithms with much lower round complexities compared to the best-known solutions in the MPC model. In particular, in the AMPC model we show how to solve maximal independent set in O(1) rounds and connectivity/minimum spanning tree in O(log logm/n n rounds both using O(nδ) space per machine for constant δ < 1. In the same memory regime for MPC, the best-known algorithms for these problems require poly log n rounds. Our results imply that the 2-CYCLE conjecture, which is widely believed to hold in the MPC model, does not hold in the AMPC model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
基于远程内存访问的大规模并行计算
我们介绍了自适应大规模并行计算(AMPC)模型,它是大规模并行计算模型的扩展。在高层,AMPC模型通过将一轮中发送的所有消息存储在分布式数据存储中来增强MPC模型。在下一轮中,向所有机器提供对数据存储的随机读取访问,受与MPC模型中相同的通信总量约束。我们的模型受到了之前使用MapReduce和分布式哈希表服务[17]对分布式图算法[8,30]进行的实证研究的启发。与MPC模型中最著名的解决方案相比,这种扩展使我们能够给出新的图算法,其回合复杂性要低得多。特别地,在AMPC模型中,我们展示了如何在常数δ<1的情况下使用每机器的O(nδ)空间来求解O(1)轮中的最大独立集和O(log logm/n n轮中的连通性/最小生成树。在MPC的相同内存机制中,解决这些问题的最著名算法需要多对数n轮。我们的结果表明,被广泛认为在MPC模型中成立的2-CYCLE猜想在AMPC模型中不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1