Efficiency improvement of photovolatic by using maximum power point tracking based on a new fuzzy logic controller

M. Effendy, N. Mardiyah, Khusnul Hidayat
{"title":"Efficiency improvement of photovolatic by using maximum power point tracking based on a new fuzzy logic controller","authors":"M. Effendy, N. Mardiyah, Khusnul Hidayat","doi":"10.14203/j.mev.2018.v9.57-64","DOIUrl":null,"url":null,"abstract":"Maximum power point tracking (MPPT) is a technique to maximize the power output of photovoltaic (PV). Therefore, to achieve higher PV efficiency, the development of MPPT control algorithm is necessary. Recently, it was revealed that fuzzy logic controller (FLC) is better than other control algorithms and is possible toe developed. This study fabricated and implemented MPPT based on the proposed a new FLC. Input Calculator (IC) via sensors reads current and voltage of PV and generates the comparison of voltage and current of PV, then IC output becomes fuzzy algorithm input. Fuzzy algorithm produces duty cycle that drives synchronous buck converter. The result showed that MPPT system with proposed FLC method has 99.1% efficiency while MPPT system with PO method has 95.5% efficiency. From the obtained result, it can be concluded that the MPPT based on the proposed FLC can increase the overall efficiency of the system to 99.3%.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechatronics Electrical Power and Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14203/j.mev.2018.v9.57-64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Maximum power point tracking (MPPT) is a technique to maximize the power output of photovoltaic (PV). Therefore, to achieve higher PV efficiency, the development of MPPT control algorithm is necessary. Recently, it was revealed that fuzzy logic controller (FLC) is better than other control algorithms and is possible toe developed. This study fabricated and implemented MPPT based on the proposed a new FLC. Input Calculator (IC) via sensors reads current and voltage of PV and generates the comparison of voltage and current of PV, then IC output becomes fuzzy algorithm input. Fuzzy algorithm produces duty cycle that drives synchronous buck converter. The result showed that MPPT system with proposed FLC method has 99.1% efficiency while MPPT system with PO method has 95.5% efficiency. From the obtained result, it can be concluded that the MPPT based on the proposed FLC can increase the overall efficiency of the system to 99.3%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊控制器的最大功率点跟踪提高光伏发电效率
最大功率点跟踪(MPPT)是一种实现光伏发电输出功率最大化的技术。因此,为了实现更高的光伏效率,开发MPPT控制算法是必要的。近年来,模糊逻辑控制器(FLC)比其他控制算法具有更好的控制性能,并有发展的可能。本研究基于提出的新型FLC,制作并实现了MPPT。输入计算器(Input Calculator, IC)通过传感器读取PV的电流和电压,并生成PV的电压和电流比较,然后IC输出成为模糊算法输入。模糊算法产生驱动同步降压变换器的占空比。结果表明,采用FLC方法的MPPT系统效率为99.1%,采用PO方法的MPPT系统效率为95.5%。从得到的结果可以看出,基于FLC的MPPT可以将系统的总效率提高到99.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
10
期刊最新文献
Five-axis parallel mechanism system (PMS) CNC partial link control system based on modified inverse kinematic of 6-DOF UPS parallel manipulator Impact of road load parameters on vehicle CO₂ emissions and fuel economy: A case study in Indonesia LSTM-based forecasting on electric vehicles battery swapping demand: Addressing infrastructure challenge in Indonesia Stability analysis of a hybrid DC-DC buck converter model using dissipation inequality and convex optimization Artificial intelligence in smart grids: A bibliometric analysis and scientific mapping study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1