Compact modeling of quantum confinements in nanoscale gate-all-around MOSFETs

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary Fundamental Research Pub Date : 2024-09-01 DOI:10.1016/j.fmre.2022.09.035
{"title":"Compact modeling of quantum confinements in nanoscale gate-all-around MOSFETs","authors":"","doi":"10.1016/j.fmre.2022.09.035","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a surface-potential based compact model focusing on the quantum confinement effects of ultimately scaled gate-all-around (GAA) MOSFET is presented. Energy quantization with sub-band formation along the radius direction of cylindrical GAAs or thickness direction of nanosheet GAAs leads to significant quantization effects. An analytical model of surface potentials is developed by solving the Poisson equation with incorporating sub-band effects. In combination with the existing transport model framework, charge-voltage and current-voltage formulations are developed based on the surface potential. The model formulations are then extensively validated using TCAD numerical simulations as well as Si data of nanosheet GAA MOSFETs. Simulations of typical circuits verify the model robustness and convergence for its applications in GAA technology.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 1306-1313"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325823000286","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a surface-potential based compact model focusing on the quantum confinement effects of ultimately scaled gate-all-around (GAA) MOSFET is presented. Energy quantization with sub-band formation along the radius direction of cylindrical GAAs or thickness direction of nanosheet GAAs leads to significant quantization effects. An analytical model of surface potentials is developed by solving the Poisson equation with incorporating sub-band effects. In combination with the existing transport model framework, charge-voltage and current-voltage formulations are developed based on the surface potential. The model formulations are then extensively validated using TCAD numerical simulations as well as Si data of nanosheet GAA MOSFETs. Simulations of typical circuits verify the model robustness and convergence for its applications in GAA technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米栅极全能mosfet中量子约束的紧凑建模
在这项研究中,我们提出了一个基于表面电位的紧凑模型,重点研究了最终规模的全栅极(GAA)MOSFET 的量子约束效应。沿圆柱形 GAA 的半径方向或纳米片 GAA 的厚度方向形成子带的能量量子化会导致显著的量子化效应。通过求解包含子带效应的泊松方程,建立了表面电势的分析模型。结合现有的传输模型框架,基于表面电势建立了电荷-电压和电流-电压公式。然后,利用 TCAD 数值模拟以及纳米片 GAA MOSFET 的硅数据对模型公式进行了广泛验证。对典型电路的模拟验证了模型在 GAA 技术应用中的稳健性和收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
期刊最新文献
Solute-solvent dual engineering toward versatile electrolyte for high-voltage aqueous zinc-based energy storage devices Prediction of novel tetravalent metal pentazolate salts with anharmonic effect Gene therapy as an emerging treatment for Scn2a mutation-induced autism spectrum disorders Peltier cell calorimetry “as an option” for commonplace cryostats: Application to the case of MnFe(P,Si,B) magnetocaloric materials Digitalized analog integrated circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1