HSCA-Net: A Hybrid Spatial-Channel Attention Network in Multi-Scale Feature Pyramid for Document Layout Analysis

Honghong Zhang, Canhui Xu, Cao Shi, Hengyue Bi, Yuteng Li
{"title":"HSCA-Net: A Hybrid Spatial-Channel Attention Network in Multi-Scale Feature Pyramid for Document Layout Analysis","authors":"Honghong Zhang, Canhui Xu, Cao Shi, Hengyue Bi, Yuteng Li","doi":"10.37965/jait.2022.0145","DOIUrl":null,"url":null,"abstract":"Document images often contain various page components and complex logical structures, which makes document layout analysis task challenging. For most deep learning based document layout analysis methods, convolutional neural networks (CNNs) are adopted as the image feature extraction networks. In this paper, a hybrid spatial-channel attention network (HSCA-Net) is proposed to improve feature extraction capability by exerting attention mechanism to explore more salient properties within document pages. The HSCA-Net contains two modules: spatial attention module (SAM) and channel attention module (CAM). They are embedded in the multi-scale feature network by lateral attention connection. SAM extracts contextual information with learning offset in spatial dimension and CAM performs feature recalibration by focusing more on feature channels with important contents. The lateral attention connection is to incorporate SAM and CAM into multi-scale feature pyramid network and retain more of the original feature information. The effectiveness and adaptability of HSCA-Net are evaluated through multiple experiments on publicly available datasets PubLayNet, ICDAR-POD and Article Regions. The mAP on these datasets is as high as 0.940,0.939 and 0.967 respectively, which demonstrate that our HSCA-Net achieves competitive results on document layout analysis task. Text.","PeriodicalId":70996,"journal":{"name":"人工智能技术学报(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"人工智能技术学报(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.37965/jait.2022.0145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Document images often contain various page components and complex logical structures, which makes document layout analysis task challenging. For most deep learning based document layout analysis methods, convolutional neural networks (CNNs) are adopted as the image feature extraction networks. In this paper, a hybrid spatial-channel attention network (HSCA-Net) is proposed to improve feature extraction capability by exerting attention mechanism to explore more salient properties within document pages. The HSCA-Net contains two modules: spatial attention module (SAM) and channel attention module (CAM). They are embedded in the multi-scale feature network by lateral attention connection. SAM extracts contextual information with learning offset in spatial dimension and CAM performs feature recalibration by focusing more on feature channels with important contents. The lateral attention connection is to incorporate SAM and CAM into multi-scale feature pyramid network and retain more of the original feature information. The effectiveness and adaptability of HSCA-Net are evaluated through multiple experiments on publicly available datasets PubLayNet, ICDAR-POD and Article Regions. The mAP on these datasets is as high as 0.940,0.939 and 0.967 respectively, which demonstrate that our HSCA-Net achieves competitive results on document layout analysis task. Text.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HSCA-Net:用于文档布局分析的多尺度特征金字塔中的混合空间通道注意力网络
文档图像通常包含各种页面组件和复杂的逻辑结构,这使得文档布局分析任务具有挑战性。对于大多数基于深度学习的文档布局分析方法,都采用卷积神经网络(cnn)作为图像特征提取网络。本文提出了一种混合空间通道注意网络(HSCA-Net),通过利用注意机制来探索文档页面中更显著的属性,从而提高特征提取能力。HSCA-Net包含两个模块:空间注意模块(SAM)和通道注意模块(CAM)。它们通过横向注意连接嵌入到多尺度特征网络中。SAM通过空间维度上的学习偏移提取上下文信息,CAM通过更多地关注具有重要内容的特征通道来进行特征再校准。横向注意连接是将SAM和CAM结合到多尺度特征金字塔网络中,保留更多的原始特征信息。通过在公共数据集pubaynet、ICDAR-POD和Article Regions上的多次实验,评估了HSCA-Net的有效性和适应性。在这些数据集上的mAP分别高达0.940、0.939和0.967,表明我们的HSCA-Net在文档布局分析任务上取得了有竞争力的结果。文本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
Detection of Streaks in Astronomical Images Using Machine Learning An Optimal BDCNN ML Architecture for Car Make Model Prediction A Bio-Inspired Method For Breast Histopathology Image Classification Using Transfer Learning Convolutional Neural Networks for Automated Diagnosis of Diabetic Retinopathy in Fundus Images Automated Staging and Grading for Retinopathy of Prematurity on Indian Database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1