Symbolic regression-based adaptive generation of implied volatility

IF 0.6 Q4 BUSINESS, FINANCE International Journal of Financial Engineering Pub Date : 2022-08-17 DOI:10.1142/s2424786322500189
J. Yen, Y. Qi, Seng Fat Wong, Jiantao Zhou
{"title":"Symbolic regression-based adaptive generation of implied volatility","authors":"J. Yen, Y. Qi, Seng Fat Wong, Jiantao Zhou","doi":"10.1142/s2424786322500189","DOIUrl":null,"url":null,"abstract":"This research paper introduces a new form of Implied Volatility calculation with Symbolic Regression suited for high-frequency trading. The solutions are easily migratable to hardware accelerators like Field Programmable Gate Arrays. This machine learning approach is flexible, and configurable for either high precision, lower latency, or energy efficiency. The model evaluates each mathematical operator in terms of cycles, which then generates highly parallel yet low depth formulas. From testing with C++, the formulas achieved higher accuracy and less than a sixth the time of traditional Implied Volatility models. The data were tested on the SPX dataset to validate accuracy.","PeriodicalId":54088,"journal":{"name":"International Journal of Financial Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Financial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424786322500189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This research paper introduces a new form of Implied Volatility calculation with Symbolic Regression suited for high-frequency trading. The solutions are easily migratable to hardware accelerators like Field Programmable Gate Arrays. This machine learning approach is flexible, and configurable for either high precision, lower latency, or energy efficiency. The model evaluates each mathematical operator in terms of cycles, which then generates highly parallel yet low depth formulas. From testing with C++, the formulas achieved higher accuracy and less than a sixth the time of traditional Implied Volatility models. The data were tested on the SPX dataset to validate accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于符号回归的隐含波动率自适应生成
本文介绍了一种适用于高频交易的符号回归隐含波动率计算的新形式。解决方案很容易迁移到硬件加速器,如现场可编程门阵列。这种机器学习方法是灵活的,可配置的高精度,低延迟,或能源效率。该模型根据循环对每个数学算子进行评估,然后生成高度并行但深度较低的公式。通过c++测试,该公式获得了更高的准确性,所用时间不到传统隐含波动率模型的六分之一。在SPX数据集上对数据进行了测试以验证准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
31
期刊最新文献
Optimal investment–consumption–insurance strategy with inflation risk and stochastic income in an Itô–Lévy setting Asymmetric link between energy market and crypto market The binomial option pricing model: The trouble with dividends Stochastic method of dynamic hedging applied to the high liquid asset markets Consumer preferences on quality of supermarket services in organized retailing: Structural equation modeling approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1